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ABSTRACT

In cognitive radio networks the secondary users are allowed to
seek and exploit the under-utilized segments of the frequency
spectrum. Driven by the ongoing growth of data networks
in scale and traffic demands, the frequency spectrum will be
populated by frequent opportunistic access by the cognitive
users. Hence, the spectrum opportunities become rare and
scattered across the entire spectrum. Due to their transient
nature, such rare spectrum opportunities should be identified
quickly. This paper develops a data-adaptive search algorithm
for identifying such rare spectrum opportunities quickly and
reliably.

Index Terms— Detection, quick, rare, search, spectrum
sensing.

1. INTRODUCTION

Current statistics about the spectrum occupancy patterns indi-
cate that a considerable fraction of the frequency spectrum is
under-utilized. This observation has promoted the notion of
cognitive communication, which envisions granting spectrum
access to unlicensed users when the licensed users under-
utilize the spectrum. Under such envisioned scenarios many
unlicensed users compete for the same spectrum resources
and the under-utilized segments of the spectrum, which we
hereinafter call spectrum holes, will not be as abundant as
they otherwise should be. Reduced availability of the spec-
trum holes becomes even more severe as the networks grow in
size and in terms of level of data traffic that they are expected
to sustain. Spectrum opportunities, as a result, become rare
and will be scattered throughout the entire frequency spec-
trum.

Besides rarity, the occupancy statuses of the spectrum
holes also vary rapidly and the spectrum holes might not
remain unoccupied for a long duration. Therefore, it is of
paramount importance to identify the spectrum holes quickly
and consequently the notion of agile spectrum sensing has re-
ceived extensive research attention. A few research directions
that are relevant to the scope of the proposed scheme in this
paper are discussed next.

This research was supported in part by the National Science Foundation
under Grant DMS-1118605.

A relevant direction is the application of distilled sens-
ing [1] and adaptive sampling [2, 3] in spectrum sensing, in
which a thresholding-based approach is proposed. In these
approaches the channels corresponding to which the measure-
ments do not satisfy a threshold criteria are discarded recur-
sively. The threshold is designed based on the statistical dis-
tributions of the measurements from the busy and idle chan-
nels. The approach proposed in this paper concurs with the
approaches of [1, 2, 3] in being data-adaptive and is differ-
ent in being robust against uncertainties about the statistical
distributions of the measurements.

Another notable direction is the quickest sequential search
approach of [4], in which a wideband spectrum is split into
smaller narrowband channels and the cognitive users scan
them sequentially one at-a-time. Upon scanning and accu-
mulating enough information about each channel a cognitive
user decides whether the channel is a hole or is occupied.
If the channel is determined to be a hole, the search is ter-
minated and otherwise the process is carried on until a hole
is detected. While this approach is very effective when the
spectrum holes are not rare, in case of rare spectrum holes
providing an accurate decision for each channel substantially
lengthens the sensing duration.

In another direction it is assumed that the wideband chan-
nel is heavily under-utilized and it is used sparsely. In this ap-
proach the cognitive radios exploit the sparsity structure of the
wideband channel and construct compressed sensing-based
machinery for estimating the power spectral density (PSD) of
the wideband channel [5, 6, 7, 8, 9, 10, 11]. These approaches
are further extended to also track temporal variations of the
spectral occupancy during sensing [12, 13]. Exploiting the
sparsity empowers the cognitive radios to sample the signal
activity over the channel at a sub-Nyquist rate, which expe-
dites the process of estimating the PSD.

In this paper the focus is on the scenario in which the spec-
trum holes are rare and spread randomly across a wideband
spectrum. The goal is to identify one or more rare spectrum
holes through 1) designing an information-gathering process
for collecting information from the entire spectrum, and 2)
delineating optimal decision rules. Designing a quick search
process involves a tension between two performance mea-
sures, one being the aggregate amount of information accu-
mulated (i.e., the number of observations made) and the other
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being the reliability (or cost) of the decision. In this paper we
design an optimal information-gathering process that maxi-
mizes the decision reliability subject to a hard1 constraint on
the aggregate number of observations we are allowed to make
from the spectrum. The proofs of the results are omitted and
can be found in [14].

2. SENSING MODEL

We consider a wideband spectrum consisting of n narrow-
band channels and adopt a dichotomous statistical model to
distinguish between occupied and vacant channels. The set of
observations made from channel n is denoted by Xn, which
consists of independent and identically distributed (i.i.d.) el-
ements X i 4

= {Xi
1, X

i
2, . . . } taking values in R obeying one

of the two hypotheses

H0 : Xi
j ∼ F0, j = 1, 2, . . .

H1 : Xi
j ∼ F1, j = 1, 2, . . .

(1)

where F0 and F1 denote the cumulative distribution functions
(cdfs) of two distinct distributions on R. The distributions F0

and F1 capture the underlying statistical models of the ob-
servations taken from the occupied and vacant channels, re-
spectively. For convenience, we assume that F0 and F1 have
probability density functions (pdfs) f0 and f1, respectively.
It is also assumed that each channel is vacant with a known
probability εn ∈ (0, 1) and independently of the rest. The
true hypothesis and a decision about channel i are denoted by
Ti ∈ {H0,H1} and Di ∈ {H0,H1}, respectively,

3. SEQUENTIAL SEARCH

3.1. Sampling Model

With the ultimate objective of identifying T ∈ N spectrum
holes the proposed sampling procedure is initiated by making
rough observations from all channels X 1, . . . ,Xn. Based on
these rough observations a fraction of the channels that are
least-likely spectrum holes are discarded and the rest are re-
tained for more accurate scrutiny. Repeating this procedure
successively refines the search support and progressively fo-
cuses the sensing resources on the more promising channels.
More specifically, at each time a subset of the channels is
selected and one measurement is taken from each of these
channels. Upon collecting these measurements, the sampling
process takes one of the following actions:

A1 (Detection): stops sampling and identifies T channels
that have the highest likelihood of being vacant;

A2 (Observation): continues to further observe the same
set of channels in order to gather more information
about their occupancy; or

1By a hard constraint we mean that the aggregate number of observations
made cannot exceed a specified level.

A3 (Refinement): discards a portion of the channels per-
manently and declares that they are most likely occu-
pied and the remaining channels are retained for fur-
ther scrutiny. By denoting the number of channels re-
tained prior to a refinement action by `, the number of
sequences that this action discards is (1−α)(`−T ) for
some α ∈ (0, 1). Discarding the channels at this rate
ensures that at least T channels will be retained for the
final detection action (action A1).

We denote the set of channels observed at time t ∈ N
by Lt. As we initialize the information-gathering proce-
dure by including all sequences for observation we have
L1 = {1, . . . , n}. Also, we denote the stopping time of the
procedure, i.e., the time after which detection (action A1)
is performed, by τ . Furthermore, we define the switching
function ψ : {1, . . . , τ} → {0, 1} to model actions A2 (ob-
servation) and A3 (refinement). At each time 1 ≤ t ≤ τ − 1
we set ψ(t) = 0 if we decide in favor of performing ob-
servation, while ψ(t) = 1 indicates a decision in favor of
performing refinement, i.e., ∀t ∈ {1, . . . , τ − 1}:

ψ(t) =

{
0 action A2 and Lt+1 = Lt
1 action A3 and Lt+1 ⊂ Lt

. (2)

Let Xi
t denote the observation made from channel i ∈ Lt

at time t and denote the σ-algebra generated by observation
{Xi

1, . . . , X
i
t} by

∀i ∈ Lt : F it = σ(Xi
1, . . . , X

i
t) . (3)

Given F it , we denote the posterior probability that channel i
is occupied by πit

4
= P(Ti = H1 | F it ). Invoking the indepen-

dence among the observations {Xi
1, . . . , X

i
t} provides

πit =

[
1 +

1− εn
εn

t∏
u=1

f0(Xi
u)

f1(Xi
u)

]−1

. (4)

By defining the likelihood ratio

Λit
4
=

t∏
u=1

f0(Xi
u)

f1(Xi
u)
, (5)

we have

πit =

[
1 +

1− εn
εn

Λit

]−1

, (6)

and the actions A1, A2, andA3 can be formalized as follows.

A1: At the stopping time τ identify the set U ⊆ Lτ as the
detector’s decision according to

U = arg max
U⊆Lτ : |U|=T

P
(
∀i ∈ U : Ti = H1 | {F iτ : i ∈ Lτ}

)
= arg max

U⊆Lτ : |U|=T

∏
i∈U

πiτ . (7)

Hence, U contains the indices of the T smallest ele-
ments of the set {Λiτ : i ∈ Lτ}.
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A2: At time t the decision is to further measure the same set
of channels (i.e. Lt+1 = Lt), and set

Λit+1 = Λit ·
f0(Xi

t+1)

f1(Xi
t+1)

. (8)

A3: At time t the decision is to refine Lt and the set Lt+1 is
obtained as

Lt+1 = arg max
L⊆Lt: |L|=ᾱt

P
(
∀i ∈ L : Ti = H1 | {F it : i ∈ Lt}

)
,

(9)

which indicates that Lt+1 contains the indices of the ᾱt
smallest elements of the set {Λit : i ∈ Lt}.

3.2. Optimal Sampling

Characterizing the experimental design and decision rules re-
lies on an interplay between two performance measures, one
being the aggregate number of observations made and the
other being the frequency of erroneous detection. The optimal
design of the search process involves optimizing a tradeoff be-
tween them. For a given stopping time τ and a given sequence
of switching functions ψ̄(τ)

4
= {ψ(1), ψ(2), . . . , ψ(τ − 1)},

the probability of erroneous detection, that is the probability
that the detected channels include an occupied channel, is

Pn(τ, ψ̄(τ))
4
= P

(∣∣{i ∈ U : Ti = H0}
∣∣ 6= 0

)
. (10)

Our objective is to minimize this detection error probability
over all possible stopping times τ , all switching rules ψ̄, and
all possible splits of the sensing resources between refine-
ment and detection actions subject to two hard constraints.
One constraint incorporates the aggregate number of avail-
able sensing resources and the other one captures the cost of
the refinement actions, which is the permanent loss of the
sequences discarded after the refinement actions. This opti-
mization problem can be formalized as

Pn(S,K)
4
=


infτ,ψ̄(τ) Pn(τ, ψ̄(τ))

s.t. 1
n

∑τ−1
t=1 |Lt| ≤ S∑τ

t=1 ψ(t) ≤ K

. (11)

where S controls the aggregate sampling budget and K is an
upper bound on the number of refinement actions. We solve
this problem in the asymptote of large n and characterize:

1. the optimal stopping time and sampling process; and

2. the minimum distance between distributions F0 and F1

such that the two hypotheses are guaranteed to be dis-
tinguished perfectly, i.e., Pn(S,K)

n→∞−−−−→ 0.

4. GAUSSIAN OBSERVATIONS

In this section we provide the solutions of (11) when F0 and
F1 are Gaussian distributions with different means or differ-
ent variances.

4.1. Gaussian Mean

The hypothesis-testing problem in this case is

H0 : Xi
j ∼ N (µ0, 1), j = 1, 2, . . .

H1 : Xi
j ∼ N (µ1, 1), j = 1, 2, . . .

(12)

where without loss of generality µ0 > µ1. Under this setting,
the likelihood ratio at time t for the sequences i ∈ Lt is

Λit = exp

{
(µ0 − µ1)

t∑
u=1

Xi
u

}
·

t∏
u=1

exp

{
µ2

1 − µ2
0

2

}
.

By defining Zit
4
=
∑t
u=1X

i
u for all t ∈ {1, . . . , τ} and i ∈

Lt, the detection and refinement actions formalized in (7) and
(9), respectively, are equivalently given by

U = indices of the T smallest elements of {Ziτ : i ∈ Lτ} ,
Lt+1 = indices of the ᾱt smallest elements of {Zit : i ∈ Lt} .

On the other hand, by invoking the distribution of Xi
t from

(12) we immediately have ∀t ∈ {1, . . . , τ} and ∀i ∈ Lt,

Zit | Hm ∼ N
(
µm · t , t

)
. (13)

Furthermore, let us for each t ∈ {1, . . . , τ} define

Ū tj
4
= the jth smallest element of {Zit : i ∈ L0

t} , (14)

U tj
4
= the jth smallest element of {Zit : i ∈ L1

t} . (15)

Given these definitions, the probability P(τ, ψ̄(τ)), which is
the probability that among the detected channels there is at
least one occupied channel, can be equivalently written as

Pn(τ, ψ̄(τ)) = P(| U ∩ L0
τ | ≥ 0) = P

(
UτT > Ūτ1

)
. (16)

Assessing this performance measure involves finding the car-
dinalities and the distributions of the first and the T th order
statistics of the sets of random variables {Ziτ : i ∈ L0

t} and
{Ziτ : i ∈ L1

t}, respectively. Hence, we first assess the varia-
tions of the number of occupied and vacant channels, denoted
by nt and n̄t, respectively, throughout the refinement process.

Lemma 1 (Refinement Performance) Let n̄t = |L0
t | and

nt = |L1
t | denote the number of occupied and vacant chan-

nels retained up to time t. For any arbitrary δ ∈ (0, 1) and
for sufficiently large n, the event nτ ≥ (1 − δ)n1 holds
almost surely if

(µ0 − µ1)2 = ω
(
n−εn

)
, (17)
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where εn is defined as

εn
4
=

lnnεn
lnn

. (18)

Therefore, when the condition in (17) is satisfied, the refine-
ment actions almost surely discard no more than a fraction
δ of the vacant channels, for any arbitrary δ ∈ (0, 1). There-
fore, the final ratio of the number of vacant channels to that of
the occupied channels increases dramatically throughout the
refinement actions.

Besides the performance of the refinement actions, the
overall detection reliability also depends on the performance
of the detection action (A1). The next lemma describes a nec-
essary and sufficient condition that guarantees asymptotically
error-free detection. Note that this lemma does not restrict
itself to any specific performance for the outcome of the re-
finement actions and applies to any arbitrary sequence of re-
finement and observation actions captured by ψ̄(τ).

Lemma 2 (Detection Performance) For a given stopping
time τ and switching sequence ψ̄(τ), the detection error
probability Pn(τ, ψ̄(τ)) tends to zero in the asymptote of
large n if and only if

rm >
(1−√εn)2

τ
, (19)

where we have defined

rm
4
=

(µ0 − µ1)2

2 lnn
. (20)

Therefore, this lemma, conditionally on the value of the stop-
ping time, which is stochastic, provides a necessary and suf-
ficient condition on the distance between distributions F0 and
F1 (captured by (µ0−µ1)2) for achieving asymptotically op-
timal detection performance. In the next lemma we show that
the stochastic stopping time is upper bounded by a constant.

Lemma 3 The sampling stopping time τ is upper bounded by
S/αK for sufficiently large n.

Combining the results of Lemmas 2 and 3 and replacing the
stopping time τ in (19) with its upper bound from Lemma 3
provides that

(µ0 − µ1)2

2 lnn
>

(1−√εn)2

S/αK
,

is a necessary condition for ensuring asymptotically error-
free detection. This clearly imposes a more stringent con-
dition on the distance (µ0 − µ1)2 than (17), which is a suffi-
cient condition for retaining at least a fraction (1 − δ) of the
rare events throughout the refinement cycles. As a result, irre-
spective of the optimal value of the stopping time τ , ensuring
asymptotically error-free detection imposes the requirement
that the refinement process retains at least a fraction (1 − δ)
of the spectrum holes.

4.2. Gaussian Variance

In this section we analyze the performance of detection and
refinement in the Gaussian variance hypothesis testing prob-
lem. The presentation of the results follows the same flow as
the problem of testing the mean, while the proofs, provided
in [14], are entirely different. The problem of interest can be
posed as

H0 : Xi
j ∼ N (0, A0), j = 1, 2, . . .

H1 : Xi
j ∼ N (0, A1), j = 1, 2, . . .

(21)

where A0 > A1 and A0, A1 ∈ R+. By following the same
line of arguments and posing the detection error problem in a
form similar to (16), the evolution of the number of occupied
and vacant channels throughout the refinement cycles can be
characterized as follows in the next lemma.

Lemma 4 (Refinement Performance) Let n̄t = |L0
t | and

nt = |L1
t | denote the number of occupied and vacant chan-

nels, respectively, that are retained up to time t. For suffi-
ciently large n, the event nτ = n1 holds almost surely
if

A0

A1
= ω (εn lnn) , (22)

where εn is defined in (18).

Therefore, when the scaling law in (22) is satisfied, the pro-
portion of the vacant channels to the occupied channels in-
creases after the refinement actions. In the next lemma we
provide a necessary and sufficient condition on the scaling of
A0/A1 that ensures perfect identification of the T sequences
generated by F1 (rare events).

Lemma 5 (Detection Performance) For a given stopping
time τ and switching sequence ψ̄(τ), and conditionally on nτ
and n̄τ , the detection error probability Pn(τ, ψ̄(τ)) tends to
zero in the asymptote of large n if and only if

ξv >
2(1− εn)

τ
, (23)

where we have defined

ξv
4
=

ln A0

A1

lnn
. (24)

By comparing the scaling laws offered by Lemmas 4 and 5
we find that the scaling law necessary for making a reliable
detection, irrespective of τ and ψ̄(τ), dominates the one that
is sufficient for maintaining nτ = n1 almost surely. In other
words, in order to perform reliable detection the refinement
action (A2) retains all the rare events almost surely.
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4.3. Optimal Switching Sequence

Given the performance of the refinement action offered by
Lemmas 1 and 4, and the detection action given by Lem-
mas 2 and 5, in this section we provide the optimal choices
of the stopping time and the switching sequence. Given the
discussions at the end of Sections 4.1 and 4.2, irrespective of
the discrepancies in the analysis and the ensuring scaling laws
in the mean and variance settings, these two settings conform
in the fact that targeting at error-free detection forces the re-
finement process to retain almost all of the vacant channels.
Primarily due to such similar behavior of the refinement pro-
cess in both settings, the optimal choices of the stopping time
and the switching sequence turn out to be exactly the same
in both settings. The optimal choices of the stopping time
and switching sequence, which are the minimizers of the er-
ror probability, are given in the next theorem.

Theorem 1 (Stopping Time) The optimal switching se-
quence for achieving Pn(S,K)

n→∞−−−−→ 0 satisfies

∀t ∈ {1, . . . ,K∗} : ψ(1) = 1, and ∀t > K∗ : ψ(t) = 0 ,
(25)

where

K∗ =

{
K , if α ≤ 1− 1

S
0 , if α > 1− 1

S

. (26)

Also the optimal stopping time is

τ =

{
K + s(K) , if α ≤ 1− 1

S
S , if α > 1− 1

S

, (27)

where

s(K)
4
=

⌊
S · α−K +

1− α−K

1− α

⌋
. (28)

This theorem demonstrates that when α is large (close to
1) optimal sampling does not involve any refinement action
and adaptive sampling does not offer any gain over the non-
adaptive sampling procedure. However, for sufficiently large
S, over a wide range of α the optimal sampling procedure
involves refinement actions and spectrum sensing becomes
adaptive. The gains of this optimal sensing procedure over
non-adaptive sensing procedures are discussed in detail in
[14].

5. CONCLUSION

In this paper we have provided a search algorithm for spec-
trum sensing, where the objective is to spot an arbitrary frac-
tion of rare spectrum holes within a wideband spectrum. The
main idea of the proposed data-adaptive spectrum sensing
procedure is to gradually adjust the measurement process us-
ing information gleaned from the previous measurements.
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