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ABSTRACT

This paper introduces a robust QR-decomposition version of

the Set Membership RLS (SM-RLS) algorithm. The SM-RLS

algorithm was recently proposed to improve the numerical

stability of the so-called BEACON algorithm, while keeping

the same performance. Our algorithm takes the numerical sta-

bility a step further, by considering the Cholesky factor of the

input autocorrelation matrix and using it in the Givens rota-

tion based update equations. The performance of the pro-

posed algorithm in comparison to the SM-RLS algorithm is

verified through computer simulation. The results show a su-

perior performance of the proposed algorithm as compared to

the original SM-RLS in finite precision environment, with-

out any compromise on the convergence and tracking perfor-

mance.

Index Terms— Inverse QRD-RLS, RLS, Set-Membership,

BEACON

1. INTRODUCTION

Set-membership filtering (SMF), while keeping the same

peak complexity of competing algorithms, reduces the aver-

age computational complexity of adaptive filters [1]. These

algorithms are derived from a deterministic objective func-

tion with bounded error constraint, enforcing updates only

from a feasible solution set. This results in data-selective

updates of the adaptive filtering algorithm and therefore a

computational complexity advantage over their conventional

counterparts. A lower computational cost directly impacts

the power consumption and therefore leads to “green” and

environmentally friendly solutions. The sparse update also

allows better tracking capability and enables efficient usage

of shared resources in case of a multi-channel problem.

The SMF concept has been successfully employed to

a number of traditional algorithms including those mini-

mizing least-squares (LS) errors [2]. It is well-known that LS

based algorithms (e.g. the recursive least-squares (RLS) algo-

rithm) outperform MSE based algorithms (e.g. the least-mean

∗J. A. Apolinário Jr. thanks the Brazilian agencies CNPq and CAPES for

partial funding of this work.

squares (LMS) algorithm) in terms of convergence speed and

misadjustment. Therefore, applications requiring fast conver-

gence would favor the use of RLS-type algorithms. However,

the computational cost of the conventional RLS algorithm

as well as its instability prohibit its utilization in a wide va-

riety of applications. In [2], the combination of SMF and

LS objective functions results in the BEACON (Bounding

Ellipsoidal Adaptive CONstrained least-squares) algorithm;

a computationally efficient version of the RLS algorithm that

combines fast tracking and data selectiveness capabilities of

SMF with fast convergence and low misadjustment of RLS.

In some application scenarios, the BEACON (also referred

to as quasi-optimal bounding ellipsoid or QOBE in [3]) al-

gorithm utilizes only 5% updates to match the performance

of a conventional RLS-type algorithm. These features make

the BEACON algorithm an attractive choice for modern day

wireless communication applications requiring high conver-

gence speed, low cost, and good tracking capabilities.

Despite all the advantages of the BEACON algorithm, it

turns out to be numerically unstable [4, 5]. The instability

of RLS-type algorithms strongly depends on two factors: the

condition number of the auto-correlation matrix and the track-

ing parameter (forgetting factor) of the algorithm [6]. The

SM-RLS solution proposed in [4] and later renamed to modi-

fied quasi-optimal bounding ellipsoid or MQOBE1 in [5], un-

like the BEACON algorithm, bounds the time-varying forget-

ting factor of the algorithm which results in improved numer-

ical stability. However, as will be seen in a later section, this

algorithm is unable to address arithmetic stability issues when

the auto-correlation matrix becomes ill-conditioned.

We solve this problem by proposing an algorithm which,

using QR-decomposition [10], works on the square-root fac-

tor of the auto-correlation matrix. In this way, the arith-

metic stability is ensured as the condition number of the

squared-root is an order of magnitude lower than the actual

auto-correlation matrix, while keeping the time-varying for-

getting factor within a tight bound. An equalization scenario

1Although keeping the original name, SM-RLS, the (time-varying for-

getting factor exponentially weighted) MQOBE algorithm is not to be con-

fused with the Set-Membership Weighted RLS (SM-WRLS) algorithm de-

tailed in [7, 8]. Also note that a QR version of the SM-WRLS algorithm can

be found in [9].
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for a wireless channel is used to compare our solution with

the BEACON and the SM-RLS algorithms. The simulation

results verify the improved stability of our method when

compared to these algorithms.

The paper is organized as follows: in the next section, we

review the basic concepts of Set-Membership filtering algo-

rithms. The BEACON and the SM-RLS algorithms are de-

tailed in Section 3. Section 4 shows the proposed algorithm

while simulation results are presented in Section 5. Finally,

conclusions are drawn in Section 6.

2. SET-MEMBERSHIP FILTERING

The set-membership approach solves for a weight vector w

(order N , having N + 1 coefficients) that belongs to a set of

vectors satisfying an output error constraint defined as

|d−w
T
x| = |e| ≤ γ̄, (1)

where e is the error, d is the desired signal, x is the input

signal vector, and γ̄ is the constraint. The set of all possible

solutions within the set-membership approach is termed the

feasibility set, defined as

Θ =
⋂

(x,d)∈S̄

{w ∈ R
N+1 : |d− wTx| ≤ γ̄}, (2)

where S̄ , a data-space, is the set of all possible pairs (x, d).
An iterative solution to the set-membership approach defines

a constraint set, H(k), based on the k-th observed pairs,

(x(k), d(k)),

H(k) = {w ∈ R
N+1 : |d(k)− wTx(k)| ≤ γ̄}. (3)

The intersection of the constraint sets over all observations

0, . . . , k, leads to the exact membership set defined as

ψ(k) =

k⋂

i=0

H(i). (4)

It is important to note that, as k grows, ψ(k) approaches the

subset Θ [1]. The update of ψ(k) is illustrated in Figure 1

which shows the reduction, typical in early iterations, due to

the updating process.

H(k)

d(k) − wTx(k) = γ̄

d(k) − wTx(k) = −γ̄ψ(k)

ψ(k − 1)

Fig. 1. Updating the exact membership set ψ(k).

The approach in the adaptive algorithm is to find an an-

alytically tractable outer bound for the set ψ(k). The object

bounded ellipsoid (OBE) algorithms use ellipsoids as outer

bound [4]. In the next section we summarize two of such al-

gorithms.

3. BEACON AND SM-RLS ALGORITHMS

The basic idea of OBE algorithms is to outer bound the mem-

bership set at each instant by a mathematically tractable ellip-

soid ε(k) defined as

ε(k) = {w ∈ R
N+1 : [w − w(k)]TR(k)[w − w(k)] ≤ σ(k)},

(5)

where σ(k) > 0 and R(k) is the deterministic weighted auto-

correlation matrix of the input signal.

3.1. The BEACON Algorithm

The BEACON [2], an OBE algorithm, minimizes the cost

function [w−w(k− 1)]T R(k− 1)[w−w(k− 1)]−σ(k− 1)
subject to |d(k)−wT x(k)|2 ≤ γ̄2, which, as pointed out in [4]

and [11], is equivalent to minimizing the following objective

function:

ξ(k) =

k∑

i=0

l(i)[d(i)− xT(i)w]2. (6)

The resulting algorithm can be considered as a form of RLS

with a time-varying forgetting factor l(k) and with the auto-

correlation matrix update equation given by

R(k) = R(k − 1) + l(k)x(k)xT(k). (7)

We set S(k) = R−1(k) and summarize the rest of BEACON

update equations in Algorithm 1.

S(0) = δI; % small constant multiplying an identity matrix

w(0) = 0;

for k = 1, 2, . . . do

e(k) = d(k)− wT(k − 1)x(k);
if |e(k)| > γ̄ then

x(k) = S(k − 1)x(k);
G(k) = xT(k)x(k);

l(k) = 1
G(k)

(
|e(k)|

γ̄
− 1

)

;

S(k) = S(k − 1)− l(k)x(k)xT(k)
1+l(k)xT(k)x(k) ;

w(k) = w(k − 1) + l(k)e(k)S(k)x(k);

else

S(k) = S(k − 1);
w(k) = w(k − 1);

end

end

Algorithm 1: The BEACON algorithm [2].
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The forgetting factor l(k) and the norm of the input auto-

correlation matrix R(k) in BEACON are tangled in a positive

feedback, resulting in ever increasing values of both variables,

causing overflow in finite-precision. Consequently, the con-

tinuous decrease in S(k) triggers underflow.

3.2. The SM-RLS Algorithm

In an attempt to solve this problem, [4] proposed the SM-RLS

algorithm, i.e., the use of an exponentially weighted RLS with

a time-varying forgetting factor (more similar to the RLS al-

gorithm) instead of a variable weight as in the BEACON al-

gorithm. The cost function of the SM-RLS algorithm is ex-

pressed as

ξ(k) =
k∑

i=0

[λ(i)]k−i[d(i)− xT(i)w(k)]2. (8)

The BEACON and the SM-RLS algorithms yield the

same coefficients; yet, the SM-RLS algorithm has a negative

feedback between the autocorrelation matrix and the forget-

ting factor which preserved its numerical (infinite precision)

stability. The SM-RLS algorithm is shown in Algorithm 2.

S(0) = δI;

w(0) = 0;

for k = 1, 2, . . . do

e(k) = d(k)− wT(k − 1)x(k);
if |e(k)| > γ̄ then

x(k) = S(k − 1)x(k);
G(k) = xT(k)x(k);

λ(k) = G(k)

( |e(k)|
γ̄

−1)
;

S(k) = 1
λ(k)

(

S(k − 1)− x(k)xT(k)
λ(k)+xT(k)x(k)

)

;

w(k) = w(k − 1) + e(k)S(k)x(k);

else

S(k) = S(k − 1);
w(k) = w(k − 1);

end

end

Algorithm 2: The SM-RLS algorithm [4].

4. THE INVERSE QRD SM-RLS ALGORITHM

Despite having a bounded forgetting factor, the SM-RLS al-

gorithm was unable to solve the stability issue of the BEA-

CON algorithm in the presence of an ill-conditioned auto-

correlation matrix. This problem is solved here by factor-

izing the auto-correlation matrix, using QR decomposition,

and updating the Cholesky factor (or its inverse) [10]. The

key idea in the family of QRD-RLS adaptive algorithms is to

use unitary rotation matrices (Givens matrices in this case) to

update the factorized part of auto-correlation matrix, i.e., the

Cholesky factor matrix. These update equations are known to

be numerically stable [10].

The QR-decomposition RLS (QRD-RLS) algorithm is the

simplest form of QR-decomposition based algorithms that up-

dates the Cholesky factor using Givens rotation matrix. How-

ever, in order to compute the weight vector, an extra backward

substitution step is required. The inverse QRD-RLS (IQRD-

RLS) algorithm avoids this step by directly updating the in-

verse of the Cholesky factor. Here we present the IQRD ver-

sion of SM-RLS algorithm. The Cholesky factor matrix U(k)
is defined in,

UT (k)U(k) = XT (k)QT (k)Q(k)X(k) = R(k), (9)

where U(k) ∈ R
(N+1)×(N+1) is the Cholesky factor ma-

trix, X(k) ∈ R
(k+1)×(N+1) is the input data matrix, Q(k) ∈

R
(k+1)×(k+1) is the orthogonal Givens rotation matrix, and

R(k) ∈ R
(N+1)×(N+1) is the deterministic auto-correlation

matrix. Using (9), the variable G(k) in Algorithm 2 is rede-

fined as [11]:

G(k) = xT(k)U−1(k − 1)U−T (k − 1)
︸ ︷︷ ︸

S(k−1)

x(k) = āT(k)ā(k).

(10)

The proposed algorithm gets rid of the numerical stability is-

sue by replacing the update equation for S(k) with that of

U−1(k). The performance of the resulting algorithm is ex-

actly the same as SM-RLS with improved arithmetic stability.

All equations are summarized in Algorithm 3.

U(0) = lower inferior triangular matrix;

w(0) = 0;

for k = 1, 2, . . . do

e(k) = d(k)− wT(k − 1)x(k);
if |e(k)| > γ̄ then

ā(k) = U−T (k − 1)x(k);
G(k) = āT(k)ā(k);

λ(k) = G(k)

( |e(k)|
γ̄

−1)
;

a(k) = ā(k)√
λ(k)

;
[
γ−1(k)

0

]

= Qθ(k)

[
1

−a(k)

]

;

[
uT(k)

U−T (k)

]

= Qθ(k)

[
0T

U−T (k−1)√
λ(k)

]

;

w(k) = w(k − 1)− e(k)γ(k)u(k);

else

U−T (k) = U−T (k − 1);
w(k) = w(k − 1);

end

end

Algorithm 3: The proposed IQRD-SM-RLS algorithm.
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5. SIMULATION

A finite precision simulation of an adaptive equalizer is car-

ried out to compare the arithmetic stability of the proposed

method with that of SM-RLS, BEACON and RLS algorithms

at different word lengths, i.e., 64 (assumed infinite precision),

16, and 8 bits.

5.1. Setup

An adaptive equalizer scenario as illustrated in Figure 2 is

considered for the simulations. The signal-to-noise ratio of

the received signal is 40dB. Abrupt changes in the channel

taps are introduced at specified time intervals to verify track-

ing properties and numerical stability of all algorithms under

investigation. The input training sequence is a discrete ran-

dom signal constructed from the set (−1, 1).

Σx(k)

d(k)

n(k)

z−L

H(z) w(k)

Fig. 2. Simulation scenario (adaptive equalizer with L = 5).

5.2. Simulation with 64-bit word length

Learning-curves of all the algorithms are compared in Fig-

ure 3. The result shows that the learning curves of algo-

rithms BEACON, SM-RLS and IQRD-SM-RLS match each

other, which leads to the conclusion that in infinite precision

these algorithms are equivalent in the MSE sense. The learn-

ing curve for the RLS algorithm shows slight deviation from

those of others.

The weighting factor l(k) for BEACON and the forget-

ting factor λ(k) for SM-RLS and IQRD-SM-RLS are com-

pared in Figures 4. It shows the equivalence of the forget-

ting factor for both SM-RLS and IQRD-SM-RLS algorithms.

On the other hand, the value of l(k) in the BEACON algo-

rithm is ever increasing. In the following, Figure 5 shows the

condition number (eigenvalue spread) of the auto-correlation

matrices at each iteration. For the IQRD-SM-RLS algorithm,

the condition number is computed by reconstructing the in-

verse auto-correlation matrix (S = U−1U−T ) and then taking

its condition number, as the auto-correlation matrix is a Her-

mitian matrix. Figure 5 shows that within infinite precision,

all three algorithms yield the same condition number for the

auto-correlation matrix.
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Fig. 3. Learning curves in infinite precision environment.
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Fig. 4. Weighting / forgetting factor in infinite precision.

5.3. Finite Precision Simulation

Figures 6 and 7 show implementations with 16 and 8 bits of

floating-point precision, respectively. We observe divergence

of the BEACON and the SM-RLS algorithms in both imple-

mentations. However, the IQRD-SM-RLS algorithm remains

stable in these scenarios. Figure 8 shows the condition num-

ber evolution in the 8-bit implementation. We can observe

that the IQRD-SM-RLS algorithm, by updating the inverse

Cholesky factor, resulted in having a condition number orders

of magnitude smaller than those of the other algorithms, re-

taining arithmetic stability even with an ill-conditioned auto-

correlation matrix, confirming the well behavior of the IQRD-

SM-RLS algorithm in finite precision environment.

6. CONCLUSION

This paper proposed an inverse QRD-based version of the

SM-RLS algorithm to overcome the numerical stability is-

sues in both BEACON and SM-RLS algorithms. The per-

formance and stability of the proposed algorithm was com-

pared with algorithms BEACON and SM-RLS by simulating

4
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Fig. 6. Learning curves for the 16-bit implementation.

an adaptive equalizer in finite precision environment. The re-

sults show the superiority of the proposed algorithm over al-

gorithms BEACON and SM-RLS in terms of arithmetic sta-

bility. Furthermore, the proposed method does not demon-

strate any performance loss in terms of misadjustment and

convergence speed.
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[4] R. Arablouei and K. Doğançay, “Set-membership Recursive Least-

Squares adaptive filtering algorithm,” in Proceedings of the IEEE In-

ternational Conference on Acoustics, Speech and Signal Processing

(ICASSP 2012), Kyoto, Japan, Mar. 2012, pp. 3765–3768.

0 200 400 600 800 1000
−150

−100

−50

0

50

100

150

200

250

300

k

M
S

E
d
B

 

 

BEACON

SM−RLS

RLS (λ = 0.9)

IQRD−SM−RLS

ξ
min

Fig. 7. Learning curves for the 8-bit implementation.

0 100 200 300 400 500 600 700

1

2

3

4

5

6

7

8

9

10
x 10

5

C
o

n
d

it
io

n
 N

u
m

b
e

r 
o

f 
th

e
 A

u
to

−
c
o

rr
e

la
ti
o

n
 M

a
tr

ix

Set−membership algorithm iteration

 

 

BEACON

SM−RLS

IQRD−SM−RLS (S = U
−1

U
−T

)

Fig. 8. Condition number for the 8-bit implementation.
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