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ABSTRACT

In this paper, we develop an improved tensor MUSIC algo-
rithm adapted to multidimensional data by means of multilin-
ear algebra tools. This approach allows to preserve the mul-
tidimensional structure as the signal and the noise subspaces
are estimated from the Higher Order Singular Value Decom-
position (HOSVD) of the covariance tensor. The proposed
algorithm is applied to a polarized source model. By comput-
ing the Mean Squared Error (MSE) for different scenarios, the
performance of this method is compared to the classical MU-
SIC algorithm as well as the vector MUSIC algorithm that
includes the polarization information. The simulations show
that our algorithm outperforms the vector algorithms.

Index Terms— Tensor MUSIC, HOSVD, DOA Polari-
metric sources estimation

1. INTRODUCTION

An increasing number of signal processing applications deal
with multidimensional data like polarimetric STAP [1], polar-
ized seismic sources localization [2], multidimensional har-
monic retrieval [3, 4] or MIMO coding [5]. The multilin-
ear algebra [6, 7] provides a good framework to exploit these
data [8, 9, 3] by conserving the multidimensional structure of
the information. Nevertheless, generalizing matrix-based al-
gorithms to the multilinear algebra framework is not a trivial
task. In particular, there is no multilinear extension of the Sin-
gular Value Decomposition (SVD), having exactly the same
properties as the SVD. However, two main decompositions
exist: CANDECOMP/PARAFAC (CP) [10, 8, 9], which con-
serves the rank properties of SVD and the identifiability prop-
erties, and the Higher Order Singular Value Decomposition
(HOSVD) [7], which keeps the orthogonality properties.

This paper focuses on the problem of polarized source
parameters estimation (Direction Of Arrival (DOA) and po-
larization parameters) by using a novel version of the well-
known MUltiple SIgnal Classification (MUSIC) algorithm
adapted to multidimensional configurations. Classically the

data received on an array correspond to a vector whose di-
mension is equal to the number of sensors. If an additional
dimension is available (e.g. polarization, emitters sensors for
a MIMO configuration, Doppler frequency etc. . . ), the data
turns out to be multidimensional. Then two approaches are
possible. Firstly, the vector approach consists in unfolding the
data into vectors and applying the traditional MUSIC algo-
rithm. The tensor approach, conserves the multidimensional
structure of the recorded data by computing a data covariance
tensor. This implies to choose a tensor decomposition in
order to estimate the signal and noise subspaces.

There are several previous works on multidimensional
MUSIC. A MUSIC algorithm for electromagnetic vector-
sensor array is derived in [11] for the case of correlated
sources.. The algorithm relies on a covariance tensor ap-
proach but its purpose is the joint use of spatial and po-
larimetric smoothing in order to solve the correlation issue.
Moreover this method does not use a tensor decomposition
and is not appropriate for our problem since we considered
the case of uncorrelated sources. A DOA estimation algo-
rithm using a tensorial approach based on CP has also been
introduced in [12]. This algorithm estimates the DOA directly
without estimating the signal and noise subspaces. It is ap-
plied to the same model as in [11]. Nevertheless, the iterative
Alternating Least Squares squares procedure, used for fitting
the PARAFAC model may exhibit convergence problems in
some cases. Furthermore, depending on the data, the identi-
fiability is not always guaranteed, making impossible the use
of this algorithm. An another tensor MUSIC algorithm, Long
Vector MUSIC (LVMUSIC), is proposed in [2]. However this
algorithm does not fully exploit the multidimensional struc-
ture of the covariance tensor and therefore it is equivalent to
the vector approach.

In this paper, we work on the model of [2]. We derive
a tensor MUSIC algorithm which take account of the multi-
dimensional data structure without the potential problems of
CP. Due to its orthogonality properties, the HOSVD seems
to be more appropriate for this task. The proposed algo-
rithm is inspired by [4] which is originally based on a multi-
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dimensional Vandermonde-type decomposition and is applied
to multidimensional harmonic retrieval.

The performance of the LVMUSIC and the Tensor MU-
SIC (TMUSIC) algorithms are compared in numerical simu-
lations for different configurations. This comparison is based
on numerical Mean Squared Error (MSE) of all parameters.
Moreover the results of MUSIC pseudo-spectra and the nu-
merical Mean Squared Error (MSE) of the DOA estimation
for two close sources are also presented.

The following convention is adopted: scalars are denoted
as italic letters, vectors as lower-case bold-face letters, matri-
ces as bold-face capitals, and tensors are written as bold-face
calligraphic letters. We use the superscripts H , for Hermi-
tian transposition, ∗ for complex conjugation and ||.||, the eu-
clidean norm. The mathematical expectation is denoted by
E[.] and the Kronecker product is denoted by ⊗.

2. SOME MULTILINEAR ALGEBRA TOOLS

This section contains the main multilinear algebra tools
used in this paper. Let A, B ∈ CI1×I2×I3×I4 , be two
4-dimensional tensors and let ai1i2i3i4 , bi1i2i3i4 be their ele-
ments. The following operators are required for this paper;
for more details, especially the case of n-order tensors, we
refer the reader to [6, 7].

2.1. Unfolding

Let us denote [A]n, n = 1, . . . , 4, the operator which trans-
forms the tensor A into a matrix by concatenating the dif-
ferent slices of the tensor along the nth mode. For example,
[A]1 ∈ CI1×I2I3I4 .

2.2. Products

• Scalar product of two tensors:
< A,B >=

∑
i1

∑
i2

∑
i3

∑
i4
b∗i1i2i3i4ai1i2i3i4 .

• From the scalar product, we define the Frobenius-norm:
||A|| =

√
< A,A >

• The n-mode product (n = 1, . . . , 4) multiply a tensor
by a matrix along the n-th mode. For example, for n =
2 and for a matrix E ∈ CJ2×I2 :
(A×2 E)i1j2i3i4 =

∑
i2
ai1i2i3i4ej2i2 .

• Outer product of two tensors: E = A ◦B
∈ CI1×I2×I3×I4×I1×I2×I3×I4 with ei1i2i3i4j1j2j3j4 =

ai1i2i3i4 .bj1j2j3j4 .For example, for two vectors, a,b,
their outer product a ◦ b is a rank-1 matrix.

2.3. Higher Order Singular Value Decomposition

The Higher Order Singular Value Decomposition (HOSVD)
decomposes a 4-order tensor A as follows

A = K×1 U(1) ×2 U(2) ×3 U(3) ×4 U(4) (1)

where ∀n = 1 . . . 4, U(n) ∈ CIn×In is an orthonormal ma-
trix and where K ∈ CI1×I2×I3×I4 is the core tensor, which
satisfies the all-orthogonality conditions [7]. The matrix U(n)

is given by the SVD of the n-dimension unfolding tensor,
[A]n = U(n)Σ(n)V(n)H .

Furthermore, if A is an Hermitian tensor, i.e. I1 = I3,
I2 = I4 and ai1,i2,i3,i4 = a∗i3,i4,i1,i2 , ∀i1, i2, i3, i4, the
HOSVD of A is written [3]:

A = K×1 U(1) ×2 U(2) ×3 U(1)∗ ×4 U(2)∗. (2)

3. POLARIZED SOURCE AND OBSERVATION
MODELS

3.1. Polarized source model

Let us consider a linear uniform antenna array of M sensors
which can receive Nc polarimetric channels and a polarized
source impinging on the array. The one-dimensional DOA
of the source is denoted by θ. The signal propagation along
the spatial dimension of a polarimetric channel is modelled as
follows:

d(θ) = (1, e−2iπ d
λ
sin(θ), . . . , e−2iπ(M−1) d

λ
sin(θ))T , (3)

where d is the distance between two sensors and λ the wave-
length. On one sensor, we model the signal received in chan-
nel nc by multiplying its amplitude by ρc and shifting its
phase by ϕc relative to the first channel (channel 0) as in many
polarimetry applications1. Thus, for a single sensor, the signal
behaviour along the polarization dimension can be modelled
as [2]:

p(ρ,ϕ) = (1, ρ1e
iϕ1 , . . . , ρNc−1e

iϕNc−1)T (4)

where ρ = (ρ1, . . . , ρNc−1) and ϕ = (ϕ1, . . . , ϕNc−1) are
the gain and the phase shift between channels. Combining
equations (3) and (4), the signal propagation along the whole
array can be modeled by steering vector a(θ,ρ,ϕ) ∈ CMNc :

a(θ,ρ,ϕ) = d(θ)⊗ p(ρ,ϕ). (5)

This steering vector is used in this given form for the vec-
torial approach. However, equations (3) and (4) can also be
combined in order to obtain a steering matrix, A(θ,ρ,ϕ) ∈
CM×Nc , defined as

A(θ,ρ,ϕ) = d(θ) ◦ p(ρ,ϕ). (6)

This model keeps the two-dimensional structure of the source
and will be used for deriving the proposed tensor MUSIC al-
gorithm.

3.2. Observation model

Let us now consider P independent zero-mean Gaussian
sources with unit variance. We assume that K snapshots of
the sources impinging the array are available.

1For example in polarimetric RADAR, 2 different polarized signals are
emitted in HH and VV. These signals are received in 4 polarizations: HH,
VV, HV, VH.
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Vector model The k-th snapshot, denoted x(k) ∈ CMNc is
modelled by

x(k) =

P∑
p=1

sp(k)ap(θp,ρp,ϕp) + b(k) (7)

where ap(θp,ρp,ϕp) is the steering vector of the p-th source
and sp(k) the zero-mean Gaussian-distributed random ampli-
tude of the p-th source. b(k), is a complex zero-mean Gaus-
sian white noise with covariance matrix σ2IMNc . Let us de-
note by R = E[xxH ], the covariance matrix of the data. As
R is unknown in practice, it will be estimated by the Sample
Covariance Matrix, R̂ = 1

K

∑K
k=1 x(k)xH(k).

Matrix model For the matrix observation model, the k-th
snapshot, denoted X(k) ∈ CM×Nc is modelled by

X(k) =
P∑
p=1

sp(k)Ap(θp,ρp,ϕp) + B(k) (8)

where Ap(θp,ρp,ϕp) is the steering matrix of the p-th
source, sp(k) the zero-mean Gaussian-distributed random
amplitude of the p-th source. B(k) is a complex Gaussian
matrix. Let us denote R = E[X ◦ X∗], the covariance ten-
sor defined in [2]. Similarly with the vector approach R

is unknown in practice, it will be estimated by the Sample
Covariance Tensor, R̂ = 1

K

∑K
k=1 X(k) ◦X(k)∗.

4. MUSIC ALGORITHMS

4.1. Vector case

The vector MUSIC algorithm is performed in 3 steps. First
the SVD of R̂ is computed

R̂ = ÛΣ̂ÛH . (9)

Then, Û is truncated into Û0, keeping the (MNc − P ) last
columns of Û corresponding to the MNc − P eigenvalues.
Thus, the columns of Û0 represent an orthonormal basis of
the estimated noise subspace. Finally, the parameters of the
sources are obtained by maximizing the following criterion:

{θp,ρp,ϕp} = arg max
(θ,ρ,ϕ)

(Hv(θ,ρ,ϕ)) (10)

where
Hv(θ,ρ,ϕ) =

1

||ÛH
0 a(θ,ρ,ϕ)||

. (11)

4.2. Tensorial case

By analogy with the vectorial case, the tensor MUSIC algo-
rithm is derived as follows. First R̂ is decomposed using the
HOSVD procedure as:

R̂ = K̂×1 Û(1) ×2 Û(2) ×3 Û(1)∗ ×4 Û(2)∗. (12)

Then Û(1) is truncated into Û
(1)
0 and Û(2) to Û

(2)
0 keep-

ing2 the (M − r1) last columns of Û(1) and respectively the
(Nc − r2) last columns of Û(2). The truncation is a correct
approximation in most cases, but sometimes the use of an al-
ternating least squares algorithm is necessary for an optimal
result [13]. By contrast with the vector algorithm, different
truncation ranks can be chosen for the two modes. Finally
the parameters of the sources are obtained by maximizing the
following criterion:

{θp,ρp,ϕp} = arg max
(θ,ρ,ϕ)

(HT (θ,ρ,ϕ)) (13)

where

HT (θ,ρ,ϕ) =
1

||A(θ,ρ,ϕ)×1 Û
(1)
0 Û

(1)H
0 ×2 Û

(2)
0 Û

(2)H
0 ||

.

(14)

5. SIMULATIONS

5.1. Parameters

Numerical simulations are performed for an array of M = 10
sensors which receive in Nc = 3 polarimetric channels. The
number of parameters to be estimated is then equal to five.
Let us consider P = 1 or P = 2 zero-mean, uncorrelated
far-field sources located at θ1 = 3◦ and θ2 = −3◦. The
polarimetric properties of the second source are the same for
all simulations: ρ1 = (1, 1, 1)T , ϕ1 = (0, 0, 0)T . For the
first source, we consider 2 cases:

• in the first case, ρ1 = (1, 1.2, 1.4)T ,
ϕ1 = (0,−0.2 rad, 0.25 rad)T

• in the second case, the polarimetric properties are equal
to the first source, ρ1 = ρ2, ϕ1 = ϕ2.

R̂ and R̂ are estimated with K = 200 snapshots. In order to
compute the tensor MUSIC algorithm, the estimates of r1 and
r2 are required. r1 corresponds to the spatial dimension. It is
straightforward that r1 is equal to P , the number of sources.
Concerning r2, we consider and analyse both cases r2 = 1
and r2 = 2. An exhaustive study of the rank r2 will be pro-
posed in a forthcoming paper and especially the link between
r2 and the polarimetric properties of the sources.

5.2. Results

In this section, we will compare the performance of TMU-
SIC and LVMUSIC (developped in [2]). First, the algorithms
are computed for 1 source located at θ1 = 3◦ with ρ =
(1, 1.2, 1.4)T and ϕ = (0,−0.2 rad, 0.25 rad)T . The five
parameters are estimated. The Mean Squared Error (MSE)
of each one is calculated from 100 realizations w.r.t. several
values of Signal to Noise Ratio (SNR). The low number of

2r1 and r2 are the number of important values in the SVD decomposition
of [R̂]1 and [R̂]2. Their values will be studied in the next section.
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realisations is due to the important amount of computational
data necessary to estimate the all five parameters. The mean
of the five MSE is presented in figure 1. The simulations show
that in this case TMUSIC outperforms LVMUSIC.

Therefore, due to the difficulties to obtain results with
enough realisations for the five parameters, we now focus on
the DOA estimation. We assume that ρ1, ρ2, ϕ1, ϕ2 are
known. Moreover the two algorithms are also compared to
the classic vector MUSIC without polarization (equivalent to
Nc = 1) which is denoted VMUSIC. The 3 criteria are com-
puted for 10 realizations with SNR equal to −6dB and for
the case where the polarization of the sources are different.
Figure 2 shows the 10 pseudo-spectra vs the DOA. Due to
the value of the SNR, VMUSIC (2a) does not allow, in most
cases, to separate the 2 sources. On the contrary, the LVMU-
SIC (2b) improves significantly the separation between the 2
sources. TMUSIC (2c) and (2d) gives better results than the
vector algorithms. The results for r2 = 1 and r2 = 2 are
similar.

Then, the accuracy of each algorithms is studied. To this
end, the mean of MSE(θ̂1) and MSE(θ̂2) is computed for
1000 realizations w.r.t. several values of SNR. We can con-
sider that this measure is linked to the resolution of the algo-
rithms. The results obtained are presented in figure 3 from
the case ρ1 6= ρ2, ϕ1 6= ϕ2 and figure 4 for the second
case where the polarimetric properties are equal. One can see
that adding the polarization enhances the resolution of LV-
MUSIC when the polarimetric properties are different. On
the contrary, when the polarimetric properties are equal, the
performance of LVMUSIC are almost equal to VMUSIC. In-
deed, as the polarization parameters of the two sources are
the same, the polarization does not provide additional infor-
mations to improve the performance of the LVMUSIC algo-
rithm. By contrast TMUSIC outperforms the other methods
for both cases. This can be explained by the fact that the spa-
tial part of TMUSIC may be seen as a vector MUSIC without
polarization computed with K ′ = NcK = 3K snapshots.
The MSE of VMUSIC computed with K ′ = 3K is presented
in figure 3 and 4. We notice that it is very close to the MSE
of TMUSIC which confirms this explanation. We also notice
that the performance of TMUSIC is almost equal for r2 = 1
or r2 = 2.

6. CONCLUSION

In this paper, we worked on parameters estimation for a sim-
ulated mixture of polarized sources. We developed and stud-
ied a tensor MUSIC algorithm based on HOSVD of the data
covariance tensor, allowing to estimate jointly the DOA and
polarimetric parameters of the sources. We computed the nu-
merical performance of this algorithm and we compared it
with vector MUSIC algorithms. We showed by numerical
simulations that tensor MUSIC outperforms the vectorial ap-
proach in the considered scenarios, due to a better use of the
multilinear structure of the data.

Fig. 1: Mean of MSE of the 5 parameters VS SNR for 1 source located at
θ1 = 3◦ with ρ = (1, 1.2, 1.4)T and ϕ = (0,−0.2 rad, 0.25 rad)T

In order to confirm the interest of our approach, it could
be interesting to adapt the CP algorithm and the Cramér Rao
bound derived in [12] to our model and to compare them. We
are also currently working on the theoretical performance of
TMUSIC using a perturbation method adapted from [14].
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