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ABSTRACT

This paper describes a method to cluster and synchronize

large scale audio-video sequences recorded by multiple users

during an event. The proposed method is designed to jointly

cluster audio content and synchronize sequences in each

cluster to create a multi-view presentation of the event. The

method is roughly based on cross-correlation of local audio

features. In this paper, three main contributions are presented

to obtain a scalable and accurate framework. First, a salient

representation of features is used to reduce the computation

complexity while maintaining high performance. Second, an

intermediate clustering step is introduced to limit the number

of comparisons required. Third, a voting approach is pro-

posed to avoid tuning thresholds for cross-correlation. This

framework was tested on 164 YouTube concert videos and re-

sults demonstrated the efficiency of the method with a correct

clustering of 98.8% of the sequences.

Index Terms— Feature extraction, clustering methods,

cross-correlation, synchronization, scalability.

1. INTRODUCTION

Growing popularity of portable devices, e.g., smart-phones,

is leading to creation of a huge amount of multimedia record-

ings of the same or different events. For example, a con-

cert of a popular music band may be filmed by hundreds of

fans. Such collections could be exploited to enhance the cor-

responding audio-visual content, create summaries of a par-

ticular event, etc. The first challenge for any processing is to

cluster sequences belonging to the same events and then syn-

chronize them in time. Here we consider a collection-driven

definition of event. Given a collection of video recordings,

two recordings are considered belonging to the same event if

and only if they are recorded in the same place and can be

continuously linked in time via other recordings. This link

can be understood as a path through successive overlapping

recordings.

Synchronizing based solely on the video content is chal-

lenging because there could be no similar visual clue between

videos (e.g., due to high variation in the point of views). How-

ever, the task becomes tractable if one relies on the audio con-

tent since there is more similarity to be found in the audio.

In this paper, the problem of joint clustering and synchro-

nization of multimedia sequences is considered and some lim-

itations of current state-of-the-art approaches are addressed.

The paper is organized as follows. The proposed frame-

work is first overviewed and compared with the state-of-the-

art in section 2, and then described in details in section 3.

Experiments on a realistic database of YouTube videos are

presented in section 4, and some conclusions are drawn in

section 5.

2. METHOD OVERVIEW AND RELATED WORK

Several works on synchronization using audio content have

already been performed [1, 2, 3, 4]. All these works are pri-

marily based on computing cross-correlations between audio

fingerprints. Shrestha et al. [1] propose a multimodal syn-

chronization approach, using light flashes, audio fingerprints

and onsets, which can be understood as “audio flashes”. They

do not address the clustering problem, assuming that all the

videos already correspond to the same event. Kennedy et

al. [2] list different applications that can be envisioned af-

ter video clips have been aligned, like clustering, ranking of

clusters, selection of highest quality clips. Joint clustering and

synchronization is considered in [3, 4]. Both are based on an

implementation of audio fingerprints proposed by Wang [5].

In this paper, we propose a system for joint clustering and

synchronizing multimedia sequences. The proposed system,

schematized in Fig. 1, relies on the following main steps:

• Mel-frequency cepstral coefficients (MFCCs) [6] are

first extracted for all recordings. So called salient

MFCC representation is computed from the MFCCs

using dimension-wise maxima over some predefined

temporal window.

• Intermediate clustering and rough synchronization is

performed on salient MFCCs using newly introduced

cluster representatives and a novel voting approach.

• A precise time alignment is computed within each

intermediate cluster and final clustering is performed.
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Fig. 1. Overall schema of the proposed framework. Compu-

tation of MFCCs and salient MFCCs are followed by an in-

termediate clustering and a rough synchronization which are

then refined.

This time alignment is computed using cross-correlation

on dense MFCC features over a reduced window (cor-

responding to salient MFCC computation window).

We differ from state-of-the-art approaches in the follow-

ing main points.

Choice of the audio features: We investigate the applicability

of MFCC features to this particular task of clustering audio-

video clips. Since high accuracy is required for such applica-

tion, MFCC features should at least be comparable to audio

fingerprints. Moreover, as specified in details below, using

MFCCs allows us to implement a robust clustering strategy

that consists in voting and introducing a new representation,

called salient MFCCs, that has a low temporal resolution and

thus makes it possible to speed up the approach.

Clustering heuristics and threshold tuning: In state-of-the-art

techniques [3, 4], the cross-correlation is computed jointly for

all dimensions of the corresponding representation. A thresh-

old on the final cross-correlation value needs tuning to decide

whether the two recordings match or not. It also leads to some

other heuristics to filter out the high number of false posi-

tives because of the thresholding. Bryan et al. [3] use various

thresholds and tricks to perform final merge of video clips in

clusters; this is due to the sparse distribution of fingerprints

along with time. The two-step process proposed by Su et al.

[4] first generates large clusters by using a low threshold for

selecting matching clips; these clusters are further refined by

maximizing the intra-cluster similarity to inter-cluster simi-

larity ratio. We instead propose a different strategy based on

voting which only needs a comparison to majority of align-

ments, i.e. we use a fixed threshold of 50% that is robust to

data variation, thus does not need to be adaptive.

Scalability: Current state-of-the-art approaches do not scale

well with the size of the dataset since they rely on pair-wise

comparison of all the sequences. We overcome this by in-

troducing an intermediate clustering step and cluster repre-

sentatives which match to all the sequences in that cluster

(see Fig. 2). To address large scale issues, it is possible to

perform joint clustering and alignment in a bottom-up hierar-

Cluster representative #a

Cluster representative #b

Cluster representative #c

Event 1

Event 2

Fig. 2. Illustration of cluster representatives. One or several

cluster representatives (that can include the same sequences)

are computed for one event so as to link the longest sequences

with others. Their use drastically limit the required number of

comparisons.

chical manner by splitting the database in subsets at the lower

stages and by comparing only clustering representatives at the

higher stages. We demonstrate this in the experiment part, by

showing how to iteratively add new recordings to an already

processed database. The computational complexity is also re-

duced by comparing first salient MFCCs computed at a 1/10
th of the normal sampling rate.

3. METHOD

This section details the method presented in Figure 1.

3.1. Feature extraction

For each audio sequence, the first step is to extract MFCCs

[6]. Each sequence is segmented into frames of 40 ms with

an overlap of 50% and each frame is converted into 12 decor-

related MFCC coefficients.

3.2. Salient MFCCs

To reduce the number of features describing an audio se-

quence and limit the complexity, we extract salient MFCC

values from the dense MFCC original vectors. It is a rep-

resentation that has only a fraction (10% in this study) of

the components of the original MFCC features and is still

informative enough to be able to synchronize and match two

audio files. To compute the salient MFCCs, we only retain

dimension-wise MFCC maxima over a sliding window of Ws

MFCC frames and an overlap of θ %. We discuss these values

in section 4.2.

3.3. Comparison of two sequences

The comparison between two sequences is carried out by

computing the cross-correlation on the feature values. The
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features used in sections 3.4 and 3.5 below are, respectively,

the salient and the dense MFCCs. Cross-correlation is per-

formed individually on each coefficient. Cross-correlation is

an effective way to find the time offset between two signals.

The peak of the cross-correlation indicates the time offset be-

tween the two signals but a threshold is required to determine

whether these two signals match. Threshold tuning is a non

trivial task and an inappropriate threshold choice can alter the

performance drastically [3, 4].

To avoid the issue of threshold tuning, a novel voting ap-

proach is used instead. With our method, each of the 12 di-

mensions of MFCC leads to an estimated time offset. A match

is thus considered as true if a majority (> 6) of estimated time

offsets are in agreement. Therefore, no threshold tuning is

needed any more, which increases the reliability in selecting

matching sequences.

3.4. Intermediate clustering

A first level clustering is performed to group the set of se-

quences which have a common overlapping segment. When

dealing with large datasets, it becomes quickly infeasible to

compare all the sequences pair-wise. Therefore, we propose

to create intermediate clusters by means of cluster represen-

tatives. Cluster representatives are created by matching the

longest sequences with others, as described below.

To form these intermediate clusters, all sequences are

sorted according to their lengths. The longest video is made

the cluster representative of the first cluster. Subsequent se-

quences are compared to the existing cluster representatives.

If a sequence has an overlapping segment with an existing

cluster representative, the sequence is added to that cluster.

A new cluster is formed if a sequence does not match with

any existing representative. Note that one sequence can be

correlated to several cluster representatives, hence can be part

of many intermediate clusters. The above comparisons are

performed in the salient MFCC domain and are based on

cross-correlations as described in section 3.3.

3.5. Fine synchronization and final clustering

A pair wise comparison is done between all sequences be-

longing to the same intermediate cluster to find precise align-

ment between them. It is done using the dense MFCC features

over a small range of window which was given by the salient

comparison.

Each sequence in a cluster is only compared to all other

sequences of the same cluster, as the non overlapping se-

quences have already been separated in the step described

in section 3.4. This reduces drastically the number of dense

comparisons to be performed. A complete match-list with

time offset in seconds between the matching sequences is gen-

erated. The final clustering consists in categorizing sequences

into events (Figure 2). Sequences which have an overlapping

segment form part of the same event. Sequences which do not

overlap but are connected via a common sequence also form

part of the same event. Hence one event can be represented

by several representatives.

3.6. Scalability

In sections 3.4 and 3.5, a method was proposed to reduce the

number of comparisons required for clustering. Our frame-

work benefits from this feature even when new videos are

added to the database of events that have already been clus-

tered and synchronized. Normally, new videos would have

to be compared to all existing videos to determine the po-

tential matches, within our framework this can be avoided as

described in section 3.4.

Apart from storing final alignments as discussed in 3.5 as

the final output, intermediate clusters created in the step 3.4

are stored together with the corresponding representatives.

Hence, a new video needs only be compared to the stored

cluster representatives. After the initial clustering, the same

steps of section 3.5 are performed to get the precise alignment

and classify them into events. This method can handle effi-

ciently incremental addition to the database, paving the way

for a scalable and distributed system. It can also handle large

amounts of data as the number of comparisons are reduced to

a bare minimum and the use of salient features speeds up the

comparison.

3.7. Complexity analysis

To create a match list for K sequences, normally the number

of comparisons needed is K(K − 1)/2. Each comparison

using FFT based cross-correlation is of order O(NLogN),
leading to a complexity Cbaseline :

Cbaseline = (K(K − 1)/2)N log(N)

where N is the average number of MFCCs per sequence. The

same process based on salient MFCCs would exhibit a com-

plexity Csalient:

Csalient = (K(K − 1)/2)Ns log(Ns)

where Ns is the average number of salient MFCCs per se-

quence. The reduction in the complexity is of the order Ns/N
(1/10th in our case). The reduction is even more as we do not

do all the comparisons as discussed in sections 3.4 and 3.5. So

we separate the complexity formula into two parts. The first

part deals with the salient MFCCs used for clustering while

the second part deals with dense MFCCs dealing with the fine

synchronization

Cproposed = LsalientNs log(Ns) + LfineN log(Ws)

where Lsalient and Lfine are respectively the number of com-

parisons performed by our algorithm at the salient and fine

level. These quantities are difficult to express by formulas,
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Fig. 3. Influence of parameters on salient representation per-

formance.

since they strongly depend on the database structure. A com-

parison on complexity based on the number of actual compu-

tations for our dataset is drawn in table 2.

4. EXPERIMENTS

4.1. Dataset

The dataset consists of user contributed videos posted on

YouTube. 164 videos from 6 different artists/bands, captured

during 6 different concerts, and having a cumulative dura-

tion of 17.56 hours were used. The longest sequence was 21
mins long while the shortest was 44 seconds long. Table 1

includes more details on this database. A ground truth of 36
clusters was manually created. The smallest cluster contains

1 sequence, the biggest 29 sequences, and the average cluster

size is 4.5 sequences. From this ground truth, a binary matrix

of size 164× 164 is generated, where one/zero codes indicate

respectively matching/non-matching sequences. This matrix

is called GT matching matrix in the rest of the document.

4.2. Evaluation

First, the robustness of salient representation is evaluated for

comparing sequences. An exhaustive comparison of all se-

quences in the dataset was performed and results assessed

with the GT matching matrix using the F-measure [7]. Results

shown in Figure 3 demonstrate the accuracy of the method

with a mean F-measure above 95% and about the same as for

dense MFCCs (Ws = 1). In addition, it can be noticed that

results do not vary much with parameters Ws and θ. In the

rest of the experiments, the setup Ws = 20 and θ = 50% was

chosen.

Secondly, the obtained clustering is compared to the 36
clusters of the ground truth. All but one are found to be cor-

rectly clustered. The missed one is a cluster composed of

two songs, which is wrongly merged with a five-song clus-

ter captured during the same concert. Interestingly, the two

songs are correctly synchronized together, but the analysis of

Baseline Salient Proposed

Salient MFCC No Yes Yes

Representatives No No Yes

Complexity 100% 3.8% 2.6%

Table 2. Complexity comparison w.r.t baseline (Cbaseline) on

our dataset of 164 videos.

the audio files showed that one of them exhibits a very low

SNR, leading to a mismatch with one of the representatives

of the other cluster. Considering the sequence clustering rate

as the number of sequences correctly clustered with respect

to the whole database, the achieved clustering performance is

98.8% (= 162/164).
Fine synchronization performance was not measured in

absence of ground truth. However, a manual check was per-

formed “a-posteriori” for each cluster by listening to all clus-

ter’s elements synchronized. All the sequences of all ground

truth were found to be correctly synchronized. Moreover, we

believe that for this task it is in the most cases simply impos-

sible to define a precise synchronization ground truth. Indeed,

audio recordings are often mixtures of different sources that,

being located in different places, are recorded with different

delays by different devices [8]. Thus, a “perfect synchroniza-

tion” is not unique, since it depends on the source one would

like to focus on.

The number of computations performed by our algorithm

at the salient and fine level were also gathered, and the formu-

las of section 3.7 applied to compute the complexity. Results

shown in table 2 show that our approach allows a huge de-

crease in complexity.

4.3. Scalability

Experiments were carried out to test the capability of the

method to deal efficiently with additions of new videos into

an existing database as discussed in section 3.6. For this pur-

pose, the entire database of 164 video was split into two parts:

a primary part and a secondary part. The primary part is clus-

tered and aligned, while the secondary part is incrementally

added to the clusters created using the update mechanism

presented in 3.6. Several split configurations were tested:

{120 + 44; 100 + 64; 90 + 74; 84 + 80}. For each configu-

ration, multiple iterations were run with random initialization

leading to a total of 175 tests. Precision, recall and F-measure

[7] of the final match list for each of the 175 tests were com-

puted relying on the GT matching matrix as in section 4.2.

Results summarized in table 3 indicate clearly that the method

handles efficiently the addition of new videos. The clustering

performance is not affected by the split configurations.

It must be stressed out that these tests were done to

demonstrate the ability of our framework to incrementally

add sequences to an existing clustered database while main-

taining the same performance as we would obtain by using

our algorithm on all the sequences together. This property
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Artist / Band Concert Nb. of videos Nb. of songs (events)

Muse Paris, Stade de France - June 2010 84 19

Adele London, Royal Albert Hall - September 2011 22 1

Arcade Fire Berkeley - June 2007 15 7

Iron Maiden Singapore - Feburary 2011 31 6

Lady Gaga NewYork - New Year’s eve 2012 7 1

Hubert-Félix Thiéfaine Paris, Bercy - October 2006 5 2

total 164 36

Table 1. Database description.

makes our approach scalable and provides us with a plat-

form to carry out the clustering and synchronization in a

distributed manner. This is particularly important if the large

number of existing videos (for example from YouTube) has

to be clustered in a seamless way.

5. CONCLUSIONS

We have introduced a framework for joint clustering and syn-

chronizing multi-camera videos. It is based on a light but still

discriminative fraction of the dense MFCCs that we named

“salient MFCCs”, allowing a reduction of time when com-

paring sequences. We also introduced the notion of “cluster

representative” which also limit the number of comparison

to be performed. A novel voting approach based on the in-

dividual result of each MFCC coefficient’s cross-correlation

avoids the definition of any threshold for sequence matching

decision. The rough synchronization obtained on the salient

MFCCs at the first stage is refined at the second stage; se-

quences belonging to the same cluster are precisely synchro-

nized using the dense MFCC features. We have shown that

the proposed framework drastically reduces the complexity

needed to cluster and synchronize sequences, while maintain-

ing a high level of accuracy. We have also shown that the

process is scalable and that the algorithm retains its benefits

even when the clustering is performed in a distributed man-

ner. Finally, to our best knowledge, this is the first time the

MFCC features were used for joint clustering and synchro-

nizing multi-camera videos by audio. Given the high clus-

tering performance achieved (only two out of 164 sequences

were miss-clustered), we can conclude that the performance

of MFCCs within such an application should be at least com-

parable to that of audio fingerprints.
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