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ABSTRACT

In this paper, we present a method for transient interference
suppression. The main idea is to learn the intrinsic geomet-
ric structure of the transients instead of relying on estimates
of noise statistics. The transient interference structure is cap-
tured via a parametrization of a graph constructed from the
measurements. This parametrization is viewed as an empiri-
cal model for transients and is used for building a filter that
extracts transients from noisy speech. We present a model-
based supervised algorithm, in which the graph-based empir-
ical model is constructed in advance from training recordings,
and then extended to new incoming measurements. This pa-
per extends previous studies and presents a new Bayesian ap-
proach for empirical model extension that takes into account
both the structure of the transients as well as the dynamics of
speech signals.

Index Terms— Speech enhancement, transient noise,
graph filtering, empirical models.

1. INTRODUCTION

Transient interferences, e.g. keyboard typing and door knock-
ing, are examples of signals whose representations based on
statistical models are often poor. To date, most of existing
noise reduction algorithms are based on spectral estimation
of stationary noise from segments in which the desired sig-
nal is absent. Clearly, this approach does not suit the abrupt
nature of transient noise; hence such algorithms are inade-
quate for this problem. Recently, we have presented a novel
method for clustering and suppression of transient interfer-
ences that circumvented this assumption [1, 2, 3]. The key
idea was to learn the intrinsic geometric structure of the tran-
sients instead of relying on estimates of noise statistics. We
utilized manifold learning approaches, e.g. diffusion maps
[4], to embed the measurements into a new domain and ex-
ploited the new representation to estimate the spectrum of the
transients. Such an approach enabled us in [3] to present a
model-based supervised algorithm, similarly to recent studies

This research was supported by the Israel Science Foundation (grant no.
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lowship, Technion

that rely on training and predefined models [5, 6]. However, a
known shortcoming of manifold learning methods is that the
dynamics is not considered. The input of these methods is
usually a data set of samples given in an arbitrary order, and
hence, the temporal cue of signals, such as speech and au-
dio, is ignored although it may convey important and critical
information. For example, the duration of typical phonemes
can circumvent false identification of transients; a time seg-
ment has a higher likelihood to contain speech if the preced-
ing segement contains speech.

In this paper, we extend [3] by considering the dynamics
of the measurements. The transient interference structure is
captured via a parametrization of a graph constructed from
the measurements. This parametrization is viewed as an em-
pirical model for transients and is used for building a filter that
extracts transients from noisy speech. The graph-based em-
pirical model is constructed in advance from training record-
ings, and then extended to new incoming measurements. We
present a new Bayesian approach for the model extension that
takes into account both the structure of the transients as well
as the dynamics of speech signals.

This paper is organized as follows. In Section 2, we for-
mulate the problem. In Section 3, the construction of local
models for transients is presented. In Section 4, we build
the empirical model based on a graph, describe a Bayesian
approach for extending the model to new incoming measure-
ments by exploiting the dynamics, and define a filter to esti-
mate the spectrum of the transients. In Section 5, the speech
enhancement procedure using the transient spectrum estimate
is reviewed. Finally, in Section 6, experimental results are
presented, demonstrating the impact of taking the dynamics
into account.

2. PROBLEM FORMULATION

Let xpnq denote a clean speech signal measured by a single
microphone. The measured signal ypnq is given by

ypnq “ xpnq ` tpnq ` upnq (1)

where tpnq and upnq are additive transient interference and
stationary background noise, respectively. The transient com-
ponent tpnq may consist of multiple types of interferences.
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Rewriting (1) in the short-time spectrum domain, assum-
ing the speech, the transient interference, and the stationary
noise are mutually uncorrelated, yields

λypl, kq “ λxpl, kq ` λtpl, kq ` λupl, kq (2)

where λypl, kq, λxpl, kq, λtpl, kq, and λupl, kq are the short-
time power spectral density (PSD) of the signals.

In this work, our focus is on estimating the PSD of the
transient interference λtpl, kq given noisy measurements.
Then, the estimated spectrum is incorporated into an exist-
ing speech enhancement algorithm to obtain simultaneous
suppression of transient and background noise.

3. LOCAL MODELS OF TRANSIENTS

Suppose training sets of typical transient instances tTiui are
available in advance, where each set Ti contains instances of
the same transient type. We define an empirical model for
each transient type based on these training sets. In order
to exploit the spectral structure of the transients, we collect
the spectral features from all the frequency bins of each time
frame into vectors. Let λtplq be a vector of the PSD values,
defined by

λtplq “ rλtpl, 0q, . . . , λtpl, N ´ 1qs
T (3)

whereN is the number of frequency bins. Each of the vectors
can be viewed as an N -dimensional feature vector. Let sηi be
the empirical mean vector of the i-th training set, i.e.,

η̄i “
1

|Ti|
ÿ

lPTi

log pλtplqq

and let Ci be the empirical covariance matrix of the set

Ci “
1

|Ti|
ÿ

lPTi

plog pλtplqq ´ η̄iq plog pλtplqq ´ η̄iq
T

where |Ti| is the cardinality of the set Ti. The pair psηi,Ciq

may be used as the learned model of the i-th transient type.
We choose the logarithmic domain over the linear domain
since empirical experiments show better results.

A well-known limitation of principal component analysis
(PCA) is that it is linear and able to capture only the global
structure of the training data. Thus, in this work we apply
PCA locally to each transient interference type. We obtain
that the eigenvectors of Ci, associated with the largest eigen-
values, capture most of the information disclosed in each set,
and hence, we may use only the subspace spanned by a few
principal eigenvectors. Let tvi,ju

L
j“1 be the set of L such

principal eigenvectors.
Define Pi to be a linear projection operator of any spectral

feature vector onto the local model of the i-th transient type,
given by

Pipλplqq “ η̄i `

L
ÿ

j“1

xlog pλplqq ´ sηi,vi,jyvi,j . (4)

Based on this projection, we define a pairwise metric between
spectral feature vectors as

di
`

λplq,λpl1q
˘

“
›

›Pipλplqq ´ Pipλpl
1qq
›

› . (5)

The projection in (4) extracts the components of the i-th tran-
sient type from the feature vector of any measurement, and
hence, the metric in (5) compares measurements only in terms
of the i-th type.

4. TRANSIENT SPECTRUM ESTIMATION

4.1. Graph-Based Global Model

Let T denote the collection of all training sets. We define
a non symmetric kernel A consisting of an affinity measure
between the feature vector of any measurement λyplq (not in-
cluded in the training set) and the feature vector of any train-
ing sample λtppq, where λyplq is defined similarly to (3). The
pl, pq-th element of the kernel is given by

Alp “
1

ωl
exp

"

´
di pλyplq,λtppqq

σ2

*

(6)

where p P Ti, σ2 is the kernel scale, and ωl is a normalization
factor that satisfies

ř

pPT A
lp “ 1 for all l.

We now define two symmetric kernels: Wt “ ATA and
W “ AAT . The kernel Wt is defined on the training set
and consists of an affinity between any pair of training sam-
ples. On the other hand, the kernel W consists of an affinity
between any pair of measurements with respect to the train-
ing set. It further implies that two measurements are similar
if they “see” the training samples in the same way [7]. The
two kernels can be viewed as graphs, where the samples are
the nodes of the graphs and the kernels determine the weights
of the edges connecting the nodes. For example, nodes λyplq

and λypl
1q are connected by an edge with weight W ll1

. The
role of the graph is to integrate the relations between the local
models into a global intrinsic model [8, 4]. For more details
and a probabilistic interpretation see [3].

We proceed by drawing the algebraic connection between
the eigen-decomposition of the kernels Wt and W. The
eigenvectors of the kernels are parametrization of the underly-
ing structures of the samples and viewed as empirical models
[8, 4]. Let tµj ,ϕj ,ψjuj be the singular value decomposition
(SVD) of A. It can be shown that the eigenvalues are real
and positive, and hence, can be written in a descending order
µ0 ě µ1 ě . . . ą 0. The construction of the kernels Wt and
W implies that they share the same eigenvalues µ2

j , and ϕj

and ψj are the eigenvectors of Wt and W, respectively. The
aforementioned relationship is especially suitable for sequen-
tial extension of the eigenvectors to new incoming measure-
ments consisting of two stages. In a training stage, the kernel
Wt is directly computed based on the training sets, and its
eigen-decomposition is calculated. The eigenvectors of the
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kernel form a learned model for the training set. In a test
stage, as new incoming measurements become available, we
construct A according to (6), and then compute the extended
eigenvectors of W by exploiting the algebraic relationship
given by the SVD of A

ψi “
1

µi
Aϕi. (7)

It is worthwhile noting that the extension does not involve an
eigen-decomposition. Thus, the processing of new measure-
ments requires low computational complexity (see [3]).

4.2. Bayesian Approach

We present a nonparametric Bayesian framework [9] that in-
corporates the dynamics of the measurements to improve the
extension of the empirical model. In terms of a standard
Bayesian derivation, we view the estimate of the extended
eigenvector in (7) as the available noisy “measurement”, and
we seek the “state”, which is the true extended eigenvector
ψ˚j . We assume that the likelihood function of the “mea-
surement” given the “state” is locally approximated for each
eigenvector j by a normal distribution, i.e.,

ψjplq|ψ
˚
j plq „ N pψ˚j plq,Σj,lq (8)

where Σj,l is the local covariance near ψ˚j plq.
We proceed by incorporating the empirical dynamics of

past observations. We note that the l-th coordinate of each
eigenvector parameterizes the PSD vector in the l-th time
frame λyplq. Let Nl´1 be a set of samples in a ξ ą 0

neighborhood of pλxpl ´ 1q, defined as

Nl´1 “

!

p
ˇ

ˇ

ˇ

›

›

›

pλxppq ´ pλxpl ´ 1q
›

›

›
ă ξ, p ă l ´ 1

)

where pλxpl´ 1q is the estimate of the spectrum of the speech
in the preceding time frame, which is the output of the al-
gorithm. The samples in this neighborhood represent simi-
lar past states and can be used for dynamics estimation since
their succeeding samples are available. We examined several
ways to convey the dynamics and empirically concluded that
searching similar states based on the speech estimate yields
maximal performance. Since the transient interference has
an abrupt nature and the background noise is stationary, the
speech is the primary component in the measurement with dy-
namics. We collect the succeeding samples (of the true “state”
obtained in past steps), i.e., ψ˚j pp`1q for each p P Nl´1, and
compute their mean and covariance, denoted by sψf

j,l´1 and
Σf

j,l´1, respectively. The pdf of the dynamics is estimated by
a normal distribution and given by

ψ˚j plq|ψ
˚
j pl ´ 1q “ N p sψf

j,l´1,Σ
f
j,l´1q. (9)

Since we merely have pointwise definitions of the statistical
models, we use the concept of sequential Monte Carlo meth-
ods [10] and represent the posterior pdf by a set of support
samples tψpkqj plquPk“1 (“particles”), i.e.,

Prpψ˚j plq|ψ
˚
j pl ´ 1q, ψjplqq

«
P
ř

k“1

w
pkq
l δ

´

ψ˚j plq ´ ψ
pkq
j plq

¯

, (10)

where the weights are given by

w
pkq
l “ Prpψ

pkq
j plq|ψ˚j pl ´ 1q, ψjplqq,

with
řP

k“1 w
pkq
t “ 1. We note that in (10) we assume Marko-

vian dynamics, i.e., that the current state depends only on the
previous state. We therefore have a discrete weighted approx-
imation of the desired posterior pdf. At each time step, the
particles are drawn from the posterior pdf estimate of the pre-
ceding step. By Bayes’ theorem and by the Markov dynami-
cal model, we obtain that

w
pkq
l 9Prpψ

pkq
j plq|ψ˚j pl ´ 1qqPrpψjplq|ψ

pkq
j plqq. (11)

The estimates of the densities in (11) are given by (8) and
(9). Using the estimate of the posterior pdf, a sequential es-
timator can be computed according to an optimization crite-
rion. For example, using (10) the minimum mean squared
error (MMSE) estimator is given by

pψ˚j plq “ E
“

ψ˚j plq|ψ
˚
j pl ´ 1q, ψjplq

‰

«

P
ÿ

k“1

w
pkq
t ψ

pkq
j plq. (12)

After obtaining all new estimates we apply the Gram-Schmidt
process to maintain orthogonality.

4.3. Graph-based Filter

By the orthogonality of the eigenvectors, the set tψ˚j uj forms
a complete basis for any real function defined on the set of
PSD vectors tλyplqul. In particular, let ik be a function that
retrieves the k-th frequency bin from the PSD vector λyplq,
i.e., ik pλyplqq “ λypl, kq. It implies that each spectral com-
ponent can be expanded by the set of eigenvectors as

λypl, kq “ ik pλyplqq “
ÿ

j

µ2
jxik,ψ

˚
j yψ

˚
j plq

where the inner product is defined as

xik,ψ
˚
j y fi r. . . , λyp¨, kq, . . .sψ

˚
j .

The parametrization of the graph captures the dominant
structures of the measurements. Since the construction of the
graph with an affinity metric based on local transient models
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was designed to emphasize transients, we assume that there
exists a subset of ` eigenvectors which represent the transient
interference. For simplicity, we assume that this subset con-
sists of the eigenvectors associated with the largest eigenval-
ues, i.e., tψ˚j u

`´1
j“0. In practice, we may determine the appro-

priate eigenvectors by observing their spectral structure.
We define the following graph-based filter that estimates

the transient PSD by projecting the PSD of the measurements
onto the eigenvectors spanning the transient interference sub-
space

pλtpl, kq “
`´1
ÿ

j“0

µ2
jxik,ψ

˚
j yψ

˚
j plq. (13)

In practice, few speech “leftovers” may appear in the PSD
estimate. Human speech consists of both harmonic and non-
harmonic sounds and it can span across a wide range of fre-
quencies. Thus, many speech phonemes can be represented
(at least partially) by the transients “building blocks”. Such
residuals in the PSD estimate of the transient signal degrade
the quality of the speech when incorporated into an enhance-
ment algorithm. Since the leftovers usually exist in periods
where the transient signal is absent, we are able to easily iden-
tify them by their low magnitude compared to the magnitude
of the transients. Thus, we remove potential leftovers by em-
ploying a hard threshold.

5. SPEECH ENHANCEMENT

We employ the optimally modified log spectral amplitude
(OM-LSA) estimator [11], in which the optimal spectral gain
with respect to the minimum log spectral amplitude (LSA)
error criterion is controlled by the speech presence proba-
bility. Since it is unknown, the speech presence probability
is estimated based on the time-frequency distribution of the
a-priori signal-to-noise ratio (SNR), where the noise variance
is estimated using the improved minima controlled recursive
averaging (IMCRA) [12]. Unfortunately, short and abrupt
bursts of transient interferences are falsely detected as speech
components. Hence, the transient interference is not included
in the noise PSD estimate obtained by the IMCRA approach,
and as a result, is not attenuated. In this work, we set the
optimal spectral gain to correspond to the sum of the PSD
estimates of the transient interference pλtpl, kq and the sta-
tionary noise pλupl, kq. The former estimate is obtained by
the graph-based filter (13) followed by the hard threshold-
ing, and the latter estimate is obtained by the IMCRA. The
IMCRA and the OM-LSA parameters used in this stage are
similar to the set of parameters used to enhance speech and
reduce stationary background noise as described in [11].
Since the optimal spectral gain is controlled by the transient
interference spectrum, the suppression of transients is now
attainable.

6. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed algorithm and
compare it to the method presented in [3] to demonstrate the
impact of the Bayesian approach. Similarly to the experimen-
tal setup in [3] we use recorded speech and transient signals
sampled at 16 KHz. The time domain measurements are con-
structed according to (1). We rescale the speech and transient
interference to have equal maximal amplitude in the measured
interval. The additive stationary noise part is a white Gaus-
sian noise with SNR of 20 dB. Each measurement is 20 s
long and comprises several speech utterances of 5 different
speakers and 30 transient events. For the time-frequency rep-
resentation, we use time frames of 512 samples length with
75% overlap between successive frames. We have examined
the suppression of three transient interference signals: (1)
keyboard typing, (2) household interferences, and (3) door
knocks. We trained three corresponding models based on
training recordings consisting of 10 instances of transients
from each type. In addition, in order to represent the tran-
sients and define the graph-based filter (13) we used the prin-
cipal ` “ 10 eigenvectors of the graph. For each transient
interference we empirically tuned the parameters, e.g. the
kernel scale, such that maximum performance was obtained.

The algorithms are evaluated using three objective mea-
sures: SNR, mean log spectral distortion (LSD), and percep-
tual evaluation of speech quality (PESQ). The SNR and LSD
are computed only in time periods where the estimate of the
PSD of transients exists. This way we are able to focus on
the performance of the proposed algorithm and to evaluate
the speech enhancement and the artifacts introduced by the
algorithm simultaneously. In periods where the transient es-
timate does not exit, only stationary noise suppression is at-
tained, and the performance of the algorithm is equal to the
performance of the OM-LSA. The PESQ score, which covers
different aspects and complements the former quality mea-
sures, is computed in the entire segment. The aforementioned
experiment was repeated several times with different speech
segments and different transient and stationary noise realiza-
tions; the reported results are the averages of the measures
over these experiments.

Table 1 summarizes the evaluation of the speech enhance-
ment. In all of the tested cases, the addition of Bayesian fil-
tering demonstrates substantially superior LSD and PESQ im-
provements at the expense of slightly inferior SNR improve-
ments. We note that the PESQ scores of the noisy signals
are 2.165, 2.028 and 1.933, respectively. LSD and PESQ im-
provements indicate that the enhanced speech exhibits fewer
distortions and artifacts using the Bayesian filtering, whereas
the SNR degradation implies weaker noise suppression.

One of the advantages of incorporating the temporal dy-
namics is a decrease in the number of “false alarms”, i.e., false
identification of speech phonemes as transients. For example,
an empirical estimation of the dynamics and cross-relations

4
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Table 1. Speech Enhancement Evaluation.
Transient Type SNR Improvement [dB] LSD Improvement [dB] PESQ Score Improvement

Method Bayesian Method Bayesian Method Bayesian
Proposed in [3] Filtering Proposed in [3] Filtering Proposed in [3] Filtering

Keyboard Typing 7.78 7.63 2.12 2.48 0.749 0.753
Household Knocks 6.62 6.57 2.04 2.83 0.644 0.801
Door Knocks 9.79 9.55 2.39 2.52 0.536 0.699

Table 2. Mean Number of False Alarms.
Transient Type Method Bayesian

Proposed in [3] Filtering
Keyboard Typing 3.3 3
Household Knocks 5.3 4.7
Door Knocks 4 4

between time frames enables to eliminate false transient iden-
tifications within speech segments, since a high power mea-
surement has a higher likelihood to contain speech if the pre-
ceding measurement contains speech. We present in Table 2
the mean number of encountered false alarms over the dif-
ferent test recordings in the experiments out of the 30 tran-
sient events in each recording. We observe that the addition
of Bayesian filtering that incorporates the dynamics indeed re-
duces the number of false alarms. We also note that no missed
hits were encountered.

7. CONCLUSIONS

We have presented a supervised graph-based processing
framework for sequential transient interference suppression.
The primary focus is on building empirical models for tran-
sients driven by examples, which can in turn be extended
to new measurements in a sequential manner. This paper
extends a previous work and introduces a nonparametric
Bayesian approach that exploits the dynamics of the speech
to improve the extension of the empirical models. Experimen-
tal results show that the addition of the dynamics enhances
the performance of transient interference suppression and
attains lower speech distortion. We note that the presented
nonparametric Bayesian framework extends the scope of this
paper and can be used to extend empirical models based on
spectral representations in the context of time series analysis
and processing.
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