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ABSTRACT

In this paper, we will firstly show that the Cyclic Autocorre-
lation function (CAF) is a sparse function in the cyclic fre-
quency domain . Then using this property we propose a new
CAF estimator, using Compressed Sensing (CS) technique
with OMP algorithm [1]. This estimator outperforms the clas-
sic estimator used in [2]. Furthermore, since our estimator
does not need any information, we claim that it is a blind es-
timator whereas the estimator used in [2] is clearly not blind
because it needs the knowledge of the cyclic frequency. Us-
ing this new CAF estimator we proposed in the second part of
this paper a new blind free bands detector. It assumes that two
estimated CAF of two successive packets of samples, should
have close cyclic frequencies, if a telecommunication signal
is present. This new detector is a soft version of the detec-
tor already presented in [3]. This methods outperforms the
cyclostationnarity detector of Dantawate Giannakis of [2].

Index Terms— Cognitive Radio, Dynamic Spectrum Ac-
cess (DSA), Spectrum sensing, Compressed sensing, Spar-
sity.

1. INTRODUCTION

To answer to the scare spectrum resource problem Cognitive
Radio has been proposed as an efficient technique by access-
ing networks in an independent and dynamic way. In fact,
most parts of the spectrum are allocated to licensed radio ser-
vices (referred to as Primary Users (PUs)) that have exclusive
access rights. However, Secondary Users (SUs) can still ac-
cess opportunistically to the spectrum held by the PUs using
spectrum sensing. There are many spectrum sensing tech-
niques that enhance the SUs detection opportunities in to li-
censed bands, allowing the access to unused portions of the
licensed spectrum. Classifying all the existing techniques is
always difficult, because any sharing could be discussed. It is
classical to have a first coarse sharing between collaborative
and non-collaborative techniques. In these two classes there
exist a lot of methods, it is not the objective of this paper to

classify these techniques and to give their pros and cons. A
lot of very good review papers already did it. The reader may
refer to [4, 5, 6, 7]. The work of this paper belongs to the non-
collaborative class. Furthermore we are interested in narrow
band detection. Our objective is to find a robust technique (in
terms of detection probability), fully blind, with short sensing
time (small number of samples needed).

The most well known techniques for our problem are en-
ergy detection (ED) [8, 9], matched filtering (MF) detection
[9], and cyclostationary detection (CSD) [2, 11], and all tech-
niques which mixed them as in [12, 13]. Cyclostationary de-
tection, which relies on the Higher-Order-Statistics (HOS),
requires high computation time and sufficient signal informa-
tion. Indeed, it is not robust when the sample size is small
[14]. As for the MF, it is an optimal detection method but
needs an exact knowledge of the transmitted signal and re-
quires synchronization which is usually difficult to achieve.
However in practice, SUs can’t know anything about the PUs
signal structure. On the other hand, ED is the simplest detec-
tion method but needs a perfect knowledge of the noise level.
In fact, a small error on the estimation of the noise level is
known to seriously impact the detection performance [8]. In
this paper we are specifically interested in cyclostationnary
techniques, we propose a new fully blind detection technique
based on the sparsity of the Cyclic Autocorrelation Function
(CAF).

The remaining part of the paper is organized as follows.
In section 2, we present the system model adopted through-
out this work. We introduce the background of the CAF, then
we show its sparsity property in section 3. In section 4, we
define the Cyclic Autcorrelation Vector (CAV), and we de-
scribe how it could be estimated using compressed sensing
technique. Then the new blind detection algorithm using this
estimation will be presented in section 5. Section 6 presents
simulation results and discussions. Finally, Section 7 presents
the conclusions of this study and makes some suggestions for
future work.
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2. SYSTEM MODEL

The spectrum sensing detection problem consists of collect-
ing a set of N samples y(0), y(1), ..., y(N − 1) from a given
frequency band B. Denote y by the vector formed by N sam-
ples, y = [y(0), .., y(N − 1)]t. H1 and H0 denote the binary
hypotheses that a primary user is present and absent, respec-
tively.

The binary hypotheses (H0, H1) are defined in a way such
that, under hypothesis H1 and k ∈ [0, .., N − 1], the kth col-
lected sample, y(k), is composed of a primary user signal
sample x(k), plus an additive Gaussian noise sample n(k) ∼
N (0, σ2

n) where N (m,σ2) denotes the normal distribution
with mean m and variance σ2. Under hypothesis H0, the kth

sample, y(k), consists of the additive Gaussian noise sample
n(k). Hence, we can write:{

H0 : y(k) = n(k)
H1 : y(k) = x(k) + n(k)

Hence, the performance of any spectrum sensing method
is indicated by two probabilities: the detection probability,
Pd (P (H1/H1)), and the probability of false alarm, Pfa
(P (H1/H0)).

3. CYCLIC AUTOCORRELATION FUNCTION AND
SPARSITY

Since the pioneering work of Gardner in the 75’s [16], it is
well known that every telecomunications signal is a cyclo-
stationnarity signal and its Cyclic Autocorrelation Function
(CAF) has cyclic frequencies. This cyclostationnarity prop-
erty comes from, for example, the symbol frequency, the
Guard Interval for OFDM modulation... It is shown in [10]
that the expression of the CAF, R(α, τ) of a linearly modu-
lated signal, with Ts the symbol period, and τ a given delay,
is null except when α takes an integer multiple of 1

Ts
:

Ryy(α, τ) =

{
σ2
d

Ts
e−j2παε

∫∞
−∞ g(t− τ

2 )g∗(t+ τ
2 )e−j2παtdt,

0 for α 6= k
Ts
, k ∈ Z

(1)
with ε an unknown delay, σ2

d the power of a symbol at the
emission side, g(t) the temporal impulse response of the
transmission filter, and g∗(t) is the complex conjugate of
g(t). It is clear from this expression that the CAF is a sparse
function in the cyclicfrequency domain.

We define the Cyclic Autocorrelation Vector (CAV) of the
signal y(t) as a particular vector issued from the CAF for a
fixed delay τ = τ0, and over a given cyclic frequency domain
[αmin, αmax]. The CAV is then given by:

r(τ0)yy (α) =[Ryy(αmin, τ0), Ryy(αmin + δα, τ0),

· · · , Ryy(αmax, τ0)]t
(2)

with δα is the frequency resolution step.

Fig. 1. CAV theoretical curve for a BPSK: the sparse property
appears clearly

This function is represented in Figure1 in which the sparse
property appears clearly.

4. CYCLIC AUTOCORRELATION VECTOR
ESTIMATION

4.1. Classical Cyclic Autocorrelation Vector estimation

A classical estimation of the CAF, at a given point (α, τ), of
a signal y(t), Ryy(α, τ) can be estimated using the unbiased
estimator, given by equation 3 and used in [2]:

R̂cl
yy(α, τ) ∼=

1

N

N−1∑
k=0

y(kTe)y(kTe + τ)e−j2παkTe (3)

Where 1
Te

is the sampling frequency.
The classical estimated CAV, using equation 3 is then given
by expression (4):

CÂVclassic = r̂(τ0)yy (α) = [R̂cl
yy(−αmax, τ0),

R̂cl
yy(−αmax + δα, τ0), · · · , R̂cl

yy(αmax, τ0)]T

(4)

Where δα = 2·αmax

Ñ
is the frequency resolution step and

Ñ the CAV dimension.
We may notice that r(τ0)yy (α) could also be estimated using

the FFT operator on the product y(kTe) · y(kTe + τ). In fact,
we define

fτ (kTe) = y(kTe)y(kTe + τ) (5)

Let be fτ the following vector:

fτ = [fτ (0), fτ (1 · Te), · · · , fτ (Ñ · Te − 1)]T (6)

Therefore vector r̂(τ0)yy (α) which represents the CAV estima-
tion of the signal y(t),in the cyclic domain [−αmax, αmax] is
simply the DFT of the vector fτ0 multiplied by 1

Ñ
:

r̂(τ0)yy (α) =
1

Ñ
DFT (fτ0) (7)

This observation will be used in the next section
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4.1.1. Compressed Sensing Cyclic Autocorrelation Vector es-
timation

In recent years sparse approximation approach has been de-
tailed through many fields in signal processing [18, 19, 20,
21], whose theoretical aspects focus more specifically on the
so-called compressed sensing [15, 17]. In this section, we will
describe the way to estimate the CAV by Compressed Sensing
technique.

Sparse approximation consists of finding a signal or a vec-
tor with sparseness property, that is having a small number of
nonzero elements, that satisfies (approximately) a system of
equations. For example, consider a linear system of equations
y = Ax, where A is an n−by−Ñ matrix with n < Ñ . Since
A is over complete (n < Ñ ), therefore this problem does not
have a unique solution. Among all the possible solutions, if
the true one is known a priori to be sparse then it happens that
the sparsest, i.e. the solution x containing as many as possible
zero components and satisfying y ∼= Ax, is close to the true
solution.

Based on the sparse property of the CAV in the cyclic fre-
quencies domain, we proposed in [1] a method that uses com-
pressed sensing technique (sparse reconstruction method) in
order to estimate the CAV. We showed that there are many ad-
vantages in using such a method, such as obtaining a smaller
Mean Square Error between the theoretical and the estimated
curve when applying sparse reconstruction technique, rather
than using the classical estimator of the CAV based on (3).
Also with compressed sensing we showed that its possible to
make good estimation of the cyclic frequency with few sam-
ples (short observation time), without the need of an a priori
information over the cyclic frequency contrary to the classical
method that requires the knowledge of the value α = 1

Ts
in

order to estimate the CAF at α = 1
Ts

.
We reformulate the equation 7 in order to be able to apply

Compressed Sensing.
Let be b(τ0) the vector build with n first elements of fτ0

Let be A the matrice build with Ñ frequencies with a step
δα. This matrice is also a submatrice of the Fourier matrice
(n first lines of F∗). F∗ being the complex conjugate of the
square Fourier matrice of dimension Ñ .

The problem becomes therefore the following:

Ar(τ0) = b(τ0) (8)

To solve equation 8 we proposed in [1], for complexity rea-
sons, to use the Orthogonal Matching Pursuit (OMP) algo-
rithm [22].

Figure 2 show the theoretical CAV curve as well as the
estimated CAV obtained by the classical estimator and by the
CS estimator. Both estimators recovers correctly the cyclic
frequencies. However, having a look on Figure 3, which is a
zoom on the previous Figure, shows clearly that the CS esti-
mator has no estimation noise whereas the classical estimator
has.

Fig. 2. CAV estimation thanks to Compressed Sensing

Fig. 3. Zoom on Figure 2, which highlights the estimation
noise of the classical estimator

5. THE NEW BLIND DETECTOR

We propose, in this section, an improved version of the de-
tector initially presented in [3]. The main idea behind this
detector is: two consecutive set of small number of samples
should have exactly the same cyclic frequencies if the hypoth-
esis presence of signal is true. It is called in the following:
Two Sets Compressed Sensing (TSCS) detector. A similarity
criteria on the cyclic frequencies position is performed on the
consecutive sets, in fact we compute the indexes difference δi
between cyclic frequencies of the two sets s1 and s2. This is
performed for several delays τ (over M values of τ ), then an
average on these similarities is computed (equation 9). If it
is below a predefined threshold k, then the hypothesis H1 is
decided. The ROC curves are obtained by varying the index
k from 1 to Ñ . It is evident that smaller the value of k is,
smaller is Pfa and inversly. In other terms for each value of k
we obtain a set (Pd, Pfa), that belongs to the ROC curve for
a given SNR.

δ̄ =
1

M

M∑
i=1

δi (9)

The algorithm of the TSCS detector is given below:

s1 ← [y1(0), ..., y1(ns − 1)]T

s2 ← [y2(0), ..., y2(ns − 1)]T

for i = 1 to M do
b(τi)
1 ← ns elements of f(1)τi

b(τi)
2 ← ns elements of f(2)τi

3
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r̂(τi)1 ← OMP(A,b(τi)
1 )

r̂(τi)2 ← OMP(A,b(τi)
2 )

index1 ← index(max(|r̂(τi)1 |))
index2 ← index(max(|r̂(τi)2 |))
note: index1 and index2 are chosen without taking into
account the zero cyclic frequency.
δi ← |index1 − index2|

end for
δ̄ ← 1

M

∑M
i=1 δi

if δ̄ < k then
H1 is decided

else
H0 is decided

end if

6. SIMULATIONS AND RESULTS

In this section, we first compare our new proposed TSCS de-
tector with its original non soft version proposed in [3]. For
fair comparisons, we use the same total number of samples
for both detection methods (2ns = 400 samples), we also use
the same lag set τi (M = 5) and the same value of Ñ = 512.
We used a simple BPSK modulation in all the simulations.
For a SNR = 0 dB, the result is shown on Figure 4. The ob-
served result is clear; by using a soft desicion the new TSCS
outperfoms its original version proposed in [3] (we note that
the TSCS does not require any additional complexity com-
pared to the original method of [3]). Then we compare our
new proposed TSCS detector to the classical Dantawate and
Giannakis (DG) detecor [2] using the same total number of
samples for both detection methods (2ns = N ′ = 400 sam-
ples) and the same set of delays (M = 5). For the same
SNR = 0 dB, the result is also presented on Figure 4. The
conclusion is that the TSCS detector outperforms the DG de-
tector. Furtheremore it does not need the knowledge of the
cyclic frequencies.

Fig. 4. ROC curves for TSCS and DG detectors for 400 sam-
ples and a SNR of 0 dB.

Figure 5 shows the detection probability versus the sam-
ples number for the two detectors with and without a Rayleigh
channel (each sample is multiplied with a coefficient that fol-
lows a Rayleigh distribution of variance 1 and these coefi-

cients are i.i.d.), in the same conditions (SNR = 0, Pfa
equal to 10% and same delays number (M = 5). For the same
detection probability (horizontal line) the gain in observation
time (sample number) is obvious for the TSCS detector. As
expected, for both detectors the performances decrease with
the Rayleigh channel. Nevertheless, in both conditions (with
and without channel) our TSCS detector clearly outperforms
the DG detector.

Fig. 5. Detection probability Pd for a fixed false alarm of
10% and SNR = 0 dB, versus the samples number, with and
without the propagation channel.

6.1. complexity analysis

OMP complexity is equal to O(l1.l2.l3), with l1, l2, et l3
the dictionnary number of lines, the atoms number, and
the iteration number respectively. Because OMP is used
twice in the TSCS detector, then the complexity is given by
O(2.ns.M.S.Ñ), with S the OMP iterations number. Practi-
cally S is equal to 3.

The DG detector complexity is given by O(M.N ′.(L +
1) + 4.M.L2 + 8.M3 + 6.M2 + 2.M) ∼= O(M.N ′.(L+ 1) +
4.M.L2), where L is the length of the spectral window and
N ′ the samples number.
Table 1 shows the complexity comparison (operation number)
versus the observation time (samples number) without using
a propagation channel. We conclude that the TSCS detec-
tor is more complex (around 3.8 times) than the DG detec-
tor but needs smaller number of samples or observation time
(around 9 times) at the point (Pd,Pfa)=(0.85,0.1), see Figure
5. Furthuremore our TSCS detector is a blind detector wheras
DG detector needs the cyclic frequency knowing.

7. CONCLUSION

In this paper we applied compressed sensing technique to es-
timate the sparse CAF in the cyclic frequencies domain. We
showed that the compressed sensing estimator outperforms
the classical estimator. We also noticed that with compressed
sensing we can estimate the CAV blindly without the need to
know the cyclic frequency of the transmitted signal, in con-
trary to the classical method.
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Our TSCS Detector D G Detector

Complexity O(2 ·M · ns · S · Ñ) O(M ·N ′(L+ 1) + 4 ·M ·L2)
Samples number for
(Pfa, Pd) = (0.1, 0.85)

300 2695

Log(Operations num-
ber)

6.36 5.77

a priori information Blind detector αf = 1
Ts

Table 1. Complexity comparison of the two detectors in the same conditions (Pfa, Pd) = (0.1, 0.85).

Using this blind estimator we have proposed a new
detector, called TSCS, which outperforms the classical
Dantawate/Giannakis detector of [2] for the same number
of samples and moreover it is a blind detector.

Our future work aims at using this estimator to derive
other blind detectors.
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