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ABSTRACT

For data represented by networks, the community structure
of the underlying graph is of great interest. A classical clus-
tering problem is to uncover the overall “best” partition of
nodes in communities. Here, a more elaborate description is
proposed in which community structures are identified at dif-
ferent scales. To this end, we take advantage of the local and
scale-dependent information encoded in graph wavelets. Af-
ter new developments for the practical use of graph wavelets,
studying proper scale boundaries and parameters and intro-
ducing scaling functions, we propose a method to mine for
communities in complex networks in a scale-dependent man-
ner. It relies on classifying nodes according to their wavelets
or scaling functions, using a scale-dependent modularity
function. An example on a graph benchmark having hierar-
chical communities shows that we estimate successfully its
multiscale structure.

Index Terms— Graph wavelets, community mining,
multiscale community, spectral clustering

1. INTRODUCTION

In a large number of applications, data are naturally repre-
sented as networks (or weighted graphs): social networks,
sensor networks, Internet networks, neuronal networks, trans-
portation networks, biological networks,... Analyzing such
networks has been emerging in the last decade as a central is-
sue in the study of complex networks [1, 2]. A striking prop-
erty of many networks, and a common way of simplifying the
network’s analysis, is their modular structure, i.e., there exists
groups of nodes that are more connected with themselves than
with the rest of the network; these groups are called commu-
nities [3]. As nodes in a same community tend to share com-
mon properties, community mining provides both a sketch of
the structure of a network, and some insight on nodes’ prop-
erties. One issue in community mining is defining the scale
at which one wants to analyze the network. Many algorithms
(see the review [3]) are based on the optimisation of appro-
priate evaluation functions such as the popular modularity [4]
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and generally discard this question or propose only ad-hoc
discussions. Modularity for instance is known to favour an
intrinsic scale of description [35, 6].

The present work develops a scale-dependent procedure
which identifies community structures, i.e., that classifies
nodes according to their community, at different scales. After
one decides on a scale of interest (or a collection of scales),
the objective is to mine for the communities at this(ese)
scale(s). Using multiple scales will provide a fully multiscale
community description of the network. Some authors have
proposed multiscale community mining either based on ran-
dom walk processes [7, 8], or on definitions of parametric
modularities [9, 10]. Our proposition for community mining
is to rely on the recent construction of graph wavelets based
on spectral graph theory [11].

By nature, the wavelet associated to a node a and a scale
s is local. It is centered around this node and spreads on
its neighbourhood so that the larger is s, the larger is the
spanned neighbourhood. In some sense, wavelets give an
“egocentered” view of how a node “sees” the network at that
scale. Taking advantage of this local information encoded in
wavelets, we develop an approach that clusters together nodes
whose local environments are similar, i.e., whose associated
wavelets are correlated. Then, to uncover the community
structure at a given scale, we circumvent the intrinsic scale is-
sue of the classical modularity by defining a scale-dependent
modularity (using wavelets) which leads to this scale’s com-
munity structure when it is maximized. While graph wavelets
have been applied now to classical problems in signal pro-
cessing (e.g., source estimation for EEG [12]) or image pro-
cessing [13], it has never been used for the detection of com-
munity in networks.

Section 2 recalls useful background material: an exam-
ple of network with multiscale communities, and elements of
spectral graph theory and wavelets. Some contributions to the
use of spectral graph wavelets are presented in section 3: in
3.1, we discuss that once a network is given, a proper choice
of scale boundaries ends up with parameters for the band-pass
filter defining the wavelets that are different from [11]. In
3.2, scaling functions are defined for graph wavelets, as they
will prove more robust than wavelets for community mining
(up to our knowledge, this is the first introduction of scaling
functions for graph wavelets). In section 4, the algorithm for



multiscale community mining is described and it is applied
on the benchmark in section 5. We conclude in section 6.

2. BACKGROUND MATERIAL

The present work relies on one side on the notion of mul-
tiscale communities in graphs, as discussed for instance in
[8, 14], and on spectral graph wavelets as introduced in [11]
on another. The reader is supposed to have some familiarity
with both works. Still, this section recalls useful elements.

2.1. Model of network with multiscale communities

Following [8], the model of graph defined in [14], for which
the multiscale community structure is known, is adopted as a
benchmark to test multiscale community mining. The global
density of links is controlled by a first parameter k (which is
the mean degree of the nodes). Then, the intra-community
and inter-community relative density of links is fixed by a
second parameter p. As an example, we choose k& = 16
and p = 1. We consider graphs of 640 nodes, divided in
three hierarchical levels: there are 64 small communities of
10 nodes each (the finest scale) embedded in 16 communities
of 40 nodes each (the intermediate scale), themselves embed-
ded in 4 communities of 160 nodes each (the coarsest scale).
A realization of the network is visualized in Fig. 1.

2.2. Spectral Graph Theory and Fourier Modes

Let G = (V, E, A) be a undirected weighted graph with V' the
set of nodes, F the set of edges, and A the weighted adjacency
matrix such that A;; = Aj; > 0 is the weight of the edge
between nodes ¢ and j. Note N the total number of nodes.

Let us define the graph’s Laplacian matrix L = D — A
where D is a diagonal matrix with D;; = d; = Zj #i Aij
the strength of node ¢. L is real symmetric, therefore diag-
onalisable: its spectrum is composed of its sorted eigenval-
ues (/\l)l:O...Nfl’ sothat \g < Ay < X < - < Any_1;
and of the matrix X of its normalized eigenvectors: X =
(xolx1|---|xn—1). Considering only connected graphs, the
multiplicity of eigenvalue \g = O is 1.

By analogy to the continuous Laplacian operator whose
eigenfunctions are the continuous Fourier modes and eigen-
values their squared frequencies, X is considered as the matrix
of the graph’s Fourier modes, and (v/\;) its set of

1=0...N—1
associated “frequencies”. More details are found also in [11].

2.3. The Graph Wavelets

Graph wavelets were defined in [11] using the graph Fourier
modes. Let us note 9, , the wavelet centered around node
a. Its construction is based on band-pass filters defined in the
graph Fourier domain, generated by stretching a band-pass fil-
ter kernel g(+) by a scale parameter s > 0. The stretched filter
has matrix representation G, = diag(g(sho),.-.,9(sAn-1))

Fig. 1. Sketch of the graph discussed in 2.1: each node dis-
played is actually a community of 10 nodes. The thickness of
each link is proportional to the total number of links between
the two corresponding communities.

that is diagonal on the Fourier modes (the IV eigenvectors of
L). Hence, the wavelet basis at scale s reads as:

\Ijs - (ws,0|ws,1‘ s |ws,N71) - XGSXT'

Here, our main use is of the localized wavelets 1) , them-
selves. Note that the wavelet transform at scale s of a signal
f would be obtained by decomposing f on .

The intuition behind this definition of wavelets on graphs
is that, at small scales (small scale parameter s), the filter
g(s-) is stretched out, thus letting through high frequency
modes essential to good localization: corresponding wavelets
extends only to their close neighbourhood in the graph. At
large scales (large s) the filter function is compressed around
low frequency modes and this creates wavelets encoding a
coarser description of the local environment.

We use the band-pass filter kernel g proposed in [11]:

o O

x for x <z
g(z;a, B w1,20) = plw)  for zp<wz<w (1)
xg z P for x> zo.

p(x) is taken as the unique cubic polynomial interpolation
that respects the continuity of ¢ and its derivative g'.

We propose in the following a new way to set the param-
eters different from [11], by studying in 3.1 the scale bound-
aries that are relevant for community mining.

3. GRAPH WAVELET PARAMETERS AND GRAPH
SCALING FUNCTION FOR COMMUNITY MINING

We first propose a new way to specify the parameters of g
defining the graph wavelets, by studying the range for the
scales s relevant for community mining. Then, we introduce
graph scaling functions associated to graph wavelets.
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Fig. 2. (a) Band-pass filter functions g and (b) their associ-
ated low-pass filter functions h for six different scales within
the scale boundaries: s = 3.6 (S;n42), 2.4, 1.5, 0.9, 0.6 and
0.4 (Symin); and the parameters from 3.1: z; = 1, zo = 10,
a = 2 and 8 = 35. Filters computed for the network in Fig.1.

3.1. Band-pass filter parameters and scale range

For the band-pass filter kernel g of eq. (1), parameters «, 3,
x1 and x5 have to be carefully chosen so as to generate ap-
propriate wavelets, as well as the scales s to be used. Instead
of following [11], the parameters are based here on an argu-
ment of spectral clustering of graphs [3]: the eigenvector
(associated to the smallest non-zero eigenvalue ;) is the first
in importance for community mining because it contains in-
formation of the coarsest description of the graph.

A first consequence is that the maximum scale parameter
Smaz 18 set so that the filter function g(S.,q. ) starts decay-
ing as a power law only after z = Ay, hence $;40 = T2/ 1.
We require also that the filter at the maximum scale is highly
selective around \p; for that, all other eigenmodes (especially
A2) have to be attenuated. Choosing an attenuation by a fac-
tor 10, this leads us to: g(Smaz A1) = 10 g(Smaz A2), hence
B =1/10g (32).

Second, we need to keep a part of x; in the wavelets of
every scale, so that all wavelets are sensitive to large scale
community structure. We propose as minimum scale S,y
the one for which g(s,,:, A1) becomes smaller than 1. Us-
ing eq. (1), this gives s,;, = x1/A1. Imposing also that
9(Smin -) spans the whole range of eigenvalues (so that the
wavelet basis is not blind to any eigenvalue), we should have
Smin AN—1 = T2.

This argumentation gives us a value for /5 and three equa-
tions linking 1, T2, Smin and Syqz- For 1 and o describing
the cut-off at low frequency, there is no argument from spec-
tral clustering to set them. Following [11], we set 1 = 1
and « = 2. This in turn sets 2 = Ay_1/\; and, thereby,
Smaz = AN—1/22 and s, = /\% Fig. 2.(a) shows exam-
ples of band-pass filters g(s-) when using the proposed range
of scale and parameters, computed for the graph of Fig. 1.

3.2. Graph scaling functions

Let us introduce scale dependent scaling functions on graphs
by analogy to the case of the continuous wavelet transform
[15]. For that, we define the scale-dependent low-pass fil-
ters, noted H s, derived from a unique low-pass filter kernel h

stretched by the scale parameter s:
H, = diag(h(s\o), h(sA1), ..., h(sAn_1)).

For consistency with classical wavelet theory [15], we impose

h(z) = (/:o |g(i:)|2dx’>l/2.

Then, the columns ¢, , of P, = Xﬁs x " may be understood
as scaling functions at scale s. Fig. 2.(b) shows the low-pass
filters corresponding to these scaling functions.These graph
scaling functions will be useful in the next sections, as they
will lead to better results.

4. MULTISCALE COMMUNITY MINING

4.1. Elements of the method

Clustering of nodes according to their wavelets. For com-
munity mining, we aim at grouping together nodes whose en-
vironments are similar. As the local environment at a given
scale s is encoded in the graph wavelets at each node a for
this scale, we use v, o as a feature vector for the local view
from node a. A comparison of the views from two nodes a
and b is obtained by taking the correlation distance (equal to
1 minus the correlation coefficient) between wavelets:

d%(a,b) =1 — (g 0) s

where 1/);@ is the wavelet after normalization in energy.

In order to group nodes together, a hierarchical complete-

linkage clustering algorithm [16] is used, with an additional
connectivity constraint [17]: a node cannot be clustered in a
group of nodes to which it has no path in the original network.
This algorithm outputs a dendrogram. As we do not know
beforehand how many clusters there are in the network, we
have to evaluate each possible subdivision of the dendrogram
and estimate which one is relevant.
Estimation of the number of communities with a scale-
dependent modularity. As an evaluation function of the rel-
evance of a given clustering, we introduce a scale-dependent
definition of the modularity. Let S be a matrix of size IV x J
coding for a community clustering: S = (1, |1c,] ... |1¢,)
where 1¢; is the binary indicator function of community C;
(.e., Ie,, =1 if node i is in C}, else 0). The classical modu-
larity matrix B is defined as [4]:

1 dd"

B=—A-—

2m 2m
where m is the sum of all weights in the graph and d the
vector of strengths of the nodes. The usual modularity is then

computed as: Q = tr(ST BS). Here, we introduce a filtered
version of B at each scale s:

BI =®]B=xG,x"B.
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Fig. 3. Normalized mutual information (nmi) between the
theoretical partition and the empirical one obtained when cut-
ting the dendrogram with theoretical number of clusters. Left:
using wavelets. Right: using scaling functions.

Then, a scale-dependent modularity is Q9 = tr(S T BIS).

Choosing the subdivision of the dendrogram (from the
clustering of nodes) that maximizes the scale-dependent
modularity leads to a community structure at scale s. We
thereby circumvent the existing problem of classical modu-
larity which imposes its own uncontrolled scale [5, 6].

In this method, we may replace wavelet functions (with
filter g) by scaling functions (with filter /). In that case, the
average of the scaling functions is removed to compute the
correlation distance d”. Results with both choices will be
shown and we discuss afterwards which one is to be preferred.

4.2. Proposed method for multiscale community mining

The proposed method is summarized as follows.

1. Choose one scale s in the range of scales [S;in, Smaz]
relevant to study the community structure (see 3.1).

2. Compute the graph wavelets (resp. the scaling func-
tions) at s for each node (as described in 2.3, resp. 3.2).

3. Cluster the nodes according to the correlation distance
dJ between wavelets (resp. d” between scaling func-
tions), using a hierarchical complete-linkage clustering.
The output is a dendrogram.

4. Evaluate each subdivision of the dendrogram with the
filtered modularity, and keep the one yielding the max-
imum filtered modularity Q7 (resp. Q™).

This outputs the community structure at scale s. To obtain a
full multiscale description, repeat the steps with a sampling
of the scales between the scale boundaries.

5. TEST OF THE METHOD ON A HIERARCHICAL
BENCHMARK NETWORK

We test the algorithm on the model of network described in
2.1. Following the method of 4.2, we obtain in step 3 one
dendrogram per scale. Let us first assess the validity of the
dendrograms. For each of the three levels of description, we
compute the normalized mutual information (nmi) [18] be-
tween the known theoretical partition and the empirical one
obtained when cutting the dendrogram with a priori knowl-
edge of the total number of clusters. We plot it with respect to
the scale parameter in Fig. 3. The black squares stands for the

O2 10 40 160 G2 10 40 160
# of clusters # of clusters

Fig. 4. Modularity: scale-dependent Q" (left) or usual @
(right) with respect to the number of clusters for three dif-
ferent scales s (s = 1.2 in dot-dashed blue, 2.4 in dashed red,
3.3 in black line). The maximum should estimate the number
of communities at each scale; it is correct only for Q.

fine level of description, the red triangles for the intermediate
one, and the blue circles for the coarsest one. A nmi value of
1 means that both partition are the same. Results are obtained
using wavelets (left), or scaling functions (right). We see that
there always exists an interval of scales for which one may
recover the theoretical partition from the dendrogram. When
using scaling functions, the intervals at value 1 are larger, es-
pecially for small scale. This validates the first three steps of
our method: the dendrograms do contain the relevant scale-
dependent information.

A next question is: if we don’t use our a priori knowledge
of the theoretical number of clusters, does the maximisation
of the proposed scale-dependent modularity estimate the cor-
rect number of clusters? Fig. 4 displays the scale-dependent
(left) and classical (right) modularity with respect to the num-
ber of clusters kept in the dendrogram, for three different
scales s. The maxima that define the best partition at each
scale are significantly different. For classical modularity, it
is always near the same number of clusters (hence pointing
to communities having always the same mean size). For the
scale-dependent modularity, it changes with s: the smaller s
points to a higher number of clusters, hence smaller clusters.
Here, we used Q" but results are similar with wavelets. This
illustrates why we need a scale-dependent modularity.

Quantitative results for the method are obtained by creat-
ing bootstrap samples of the network model of 2.1, by ran-
domly adding +10% of the weight of each link as in [8, 19].
We plot in Fig. 5 the average (over 100 bootstrap samples) of
the estimated number of communities (top), and the average
size of the uncovered communities (bottom). The dotted hor-
izontal lines correspond to the three theoretical community
structures. The method successfully recovers these different
community structures, both in term of number of communi-
ties and size. Using scaling functions lead to better results,
with larger and better defined intervals where these numbers
and sizes are correctly estimated.

6. CONCLUSION

We proposed a method for multiscale community mining in
graphs, for which no parameter needs to be adjusted. The
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Fig. 5. (a), (b) Average (over 100 bootstrap samples of the
graph) of the estimated number of communities. (c), (d) Av-
erage size of uncovered communities. Left: using wavelets.
Right: using scaling functions.

mathematical soundness of graph wavelets, on which this
method is based, is one of its great asset. The first aspect
of our work was to complement certain aspects of graph
wavelets (range of scale, parameters of the band-pass fil-
ter kernel, and corresponding graph scaling functions) for
their application to community detection in graphs. For in-
stance, scaling functions associated to graph wavelets provide
slightly better results for scale-dependent community mining.
The weakness of the method is the computational cost.
Two steps are costly: the diagonalisation of the Laplacian,
and the evaluation of each possible subdivision of the den-
drograms. Regarding the first problem, Hammond et. al [11]
proposed a fast wavelet transform based on Chebyshev poly-
nomial approximation that does not require the Laplacian’s
diagonalisation. This approximation will be easily used in
our method. For the dendrogram mining, instead of looking
at all possible subdivisions, future work may look only with
subdivisions given by the largest gaps of the dendrograms, or,
as the scale-dependent modularity has a bell shape curve (see
Fig. 4), one could search only for a large local maximum.
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