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ABSTRACT 
 

The Distributed Video Coding (DVC) paradigm is suitable 
for devices which have limited encoding capabilities. 
However, it is characterized by excessive decoding delays 
which compromise their application for time constrained 
services. This limitation can be mitigated by adopting 
parallel DVC architectures. Yet, the traditional Gray-code or 
binary-code representations have a non-uniform distribution 
of mismatch across bit-planes, resulting in uneven decoding 
times which hinder parallel decoding. This work proposes an 
alternative indexing scheme, where mismatch is distributed 
more uniformly amongst bit-planes and thus comparable 
decoding delays are expected, facilitating parallel 
implementations. This method reduces decoding time by up 
to 32% compared to architectures using simple parallel 
techniques, with a slight loss of 0.06dB in RD performance. 
 

Index Terms— Distributed video coding, index assignment, 
parallel architecture, source representation, Wyner-Ziv coding. 

 
1. INTRODUCTION 

 
The traditional video coding schemes vest in the encoder to 
exploit complex Motion Compensation (MC) and Rate-
Distortion (R-D) optimization techniques and achieve 
considerable compression efficiencies. The standard 
encoders are thus significantly more complex than the 
decoder [1] and not ideal for mobile devices or miniature 
cameras which have limited computational resources. 
Distributed Video Coding (DVC) is a promising encoding 
strategy which was widely investigated in the last decades. 
The DVC paradigm proposes to shift most of the complex 
tasks involved in exploring the source redundancies from the 
encoder to the decoder. Based on the Wyner-Ziv (WZ) 
theorem [2], this shift should not affect the theoretical 
coding efficiencies compared to standard encoding schemes. 

The DVC paradigm transfers the computational 
expensive motion compensation process from the encoder to 
the decoder, and predicts the WZ frames from the adjacent 
key-frames. This prediction is then used as Side Information 
(SI) to aid compression, by employing Turbo-Codes or Low-
Density Parity-Check Accumulate (LDPCA) codes which 
can correct the SI and reconstruct the original WZ frame 
using only a sub-set of parity information, hence obtaining 

compression. However, these channel codes use belief 
propagation algorithms which require a large number of 
floating point calculations to be repeated iteratively until 
they converge. Furthermore, since the quality of the SI is 
unpredictable, the WZ decoder has to run these codes 
several times for each bit-plane, requesting additional parity 
bits until it manages to correct the bit-plane successfully. 
This makes DVC architectures suffer from an excessive 
decoding delay relative to traditional video coding schemes. 

Several techniques have been proposed to alleviate 
some of the complexity issue for DVC decoding and make it 
suitable for more practical scenarios. Early stopping 
criterions for LDPC codes and Turbo Codes were proposed 
in [3]-[5] and [6]-[7], respectively. These methods could 
determine, as early as possible, whether the transmitted 
parity bits are sufficient for the channel decoder to converge 
successfully. On the other hand, the authors in [8] adopt a 
hybrid rate control mechanism, where the encoder promptly 
transmits a minimum number of parity bits to prevent useless 
attempts of recovering the WZ bits using very few parity 
bits. Parallelized message-passing decoding algorithm for 
LDPCA codes, on a General Purpose Graphics Processing 
Unit (GPGPU) were considered in [9]-[10] to speed up 
convergence of LDPCA codes. Yet, an optimized decoder 
implementation which can achieve desirable performance on 
a multi-core processor, without using specialized hardware 
like GPGPU, still needs to be addressed [11]. 

The authors in [12] considered a parallel DVC 
architecture, where multiple bit-planes are decoded 
simultaneously on a multi-core CPU. Yet, the Gray-code or 
binary code representations used for these architectures have 
a non-uniform probability of mismatch across bit-planes, 
thus the Lower Significant Bit-planes (LSB) need more 
parity information and take longer to recover. For parallel 
DVC architectures, these uneven decoding times lead to a 
lower utilization since some processors are left idle waiting 
for the LSB to be decoded, reducing the potentially 
achievable speed up. This work presents an indexing scheme 
which can distribute the probability of mismatch more 
uniformly across bit-planes, with a minimal affect on the 
coding performance. All bit-planes can thus be recovered at 
approximately the same time, minimizing decoding delays. 
Simulation results show that the proposed method can reduce 
decoding delays by up to 32% compared to other parallel 
schemes [12], with a slight loss of 0.06dB in RD performance. 
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This paper is organized as follows: the transform 
domain Wyner-Ziv video coding architecture is introduced 
in Section 2. Section 3 looks at the proposed index 
assignment scheme, compares the probability of mismatch at 
each bit-plane with those of the traditional index schemes, 
and studies the effects of both schemes on decoding speed. 
Section 4 then considers an algorithm to spread the 
correlation noise more uniformly across all the quantization 
intervals. The experimental results are presented in Section 
5, whilst Section 6 gives the final comments and conclusion. 

 
2. WYNER-ZIV VIDEO CODING FRAMEWORK 

 
The implemented WZ video coding architecture is based on 
the DISCOVER Codec [13] and is illustrated in Fig. 1. It 
considers the odd frames as key frames and encodes them 
using H.264/AVC Intra coding. Meanwhile, the WZ frames 
undergo a block-based Discrete Cosine Transform (DCT) 
and the resulting coefficients are organized into bands 
having coefficients of the same frequency. Each band is then 
uniformly quantized into 2M levels, with a dead-zone 
quantizer whose intervals adapt with the dynamic range of 
the coefficient band [13]. The quantized symbol stream q is 
mapped into a new index representation q̂  and the bit-
planes of the resulting symbols are fed into an LDPCA 
encoder [17]. For an architecture with N separate LDPCA 
decoders, the encoder considers the syndrome bits for the 
next N bit-planes and stores them into separate buffers. The 
Min-rate estimation module calculates the initial number of 
bits Rmin, to be transmitted for each of the N bit-planes, using 
the Laplacian parameters calculated at the decoder and sent 
periodically to the encoder via a feedback channel [8]. 
 

q̂q q̂ q

 Fig. 1. Proposed transform domain WZ video coding architecture. 

The decoder decodes the adjacent key frames and uses 
them to predict the SI by employing Motion Compensation 
Temporal Interpolation (MCTI) [16]. The difference between 
the forward and backward motion compensated frames is 
then used to model the correlation noise between the original 
WZ frame and predicted SI [17]. The Laplacian parameters, 
calculated at band level, are sent to the encoder and used to 

calculate Rmin. Conversely, the parameters at coefficient level 
are used to generate the soft-input values for the next N bit-
planes. These values are then fed into N separate LDPCA 
decoders [15] running on different cores of a multi-core 
CPU, in this case N is four for a quad-core CPU. Each 
decoder can request parity bits from the corresponding 
buffer to correct the initial predictions given by SI. The early 
stopping criteria adopted in [4] was also included to prevent 

unnecessary iterations and avoid decoding delays. When the 
set of N bit-planes are decoded successfully, the next N bit-
planes are considered, until all the bit-planes of the WZ 
frame are recovered successfully. These bit-planes are then 
joined together to form the indices q̂  and mapped back into 
the quantized coefficient stream q using an inverse mapping 
scheme. The resulting coefficients are subsequently used, 
together with the SI, to obtain the best reconstruction of the 
original WZ coefficients [18]. Finally, an Inverse DCT is 
applied to recover the WZ frame back in the pixel domain. 
 

3. INDEX REPRESENTATION SCHEME 
 

The soft-input values are calculated by modeling a Laplacian 
distribution around the value of SI and then sum up the area, 
under the distribution, enclosed by the quantization intervals 
whose index has the same bit-value as that of SI at the 
current bit-plane [12], [19]. The index representation scheme 
adopted by the DVC architecture will thus affect the 
accuracy of the soft-input values fed into the LDPCA 
decoder. Some models, like [20], consider the previously 
decoded bit-planes as well to improve the accuracy of the 
soft-input values. Yet, in parallel DVC architectures, where 
multiple bit-planes are decoded simultaneously, the soft-
input values must be computed separately for each bit-plane. 
The authors in [12] showed that an index representation 
where the adjacent indices differ by just one bit, like Gray-
codes (Fig. 2), can minimize parallelization loss and get 
results very close to the method presented in [20], even 
when the previous bit-planes are not exploited in the 
decoding of the lower order bit-planes. Moreover, the index 
representation can also affect how the mismatch in SI is 
distributed amongst the various bit-planes.  
 

 
Fig. 2 Calculating the soft-input values for the 3rd bit-plane. 

 

Fig. 2 shows the computation of the soft-input values 
for the 3rd bit-plane, when a DC coefficient of 766 is 
predicted with an SI of 771. Using Gray-code representation, 
the probability P(xi=1), calculated by summing the area 
under the shaded regions, is greater than the probability 
P(xi=0) and hence the 3rd bit-plane is incorrectly predicted as 
having a bit-value of 0, despite the very low correlation 
noise. In general, such mismatch occurs whenever the SI and 
WZ falls within adjacent intervals, indicated by the grey and 
white regions. Parity bits are requested from the encoder to 
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correct such mismatch and to ensure that the reconstructed 
coefficients are truncated within the quantization interval set 
by the WZ indices [18]. The probability of mismatch and 
decoding times, for every bit-plane, are thus correlated to the 
number of bit-changes within a particular bit-plane level. 

Consider the Gray-code representation in Fig. 2, where 
the number of bit-changes doubles from one bit-plane to the 
next. The lower significant bit-planes of SI, particularly the 
Least Significant Bit-plane, have a higher probability of 
mismatch and require more parity bits (higher rates) to 
recover, compared to the other bit-planes. The average 
number of packets required to recover the bit-planes of the 
DC coefficients, for the first few WZ frames in the Foreman 
sequence, are shown in Fig. 3(a). Here, the coefficients are 
quantized at 16-levels, to match the index scheme in Fig. 2 
and Fig. 4. Clearly, the LSBs take much longer to recover 
and leave the other decoders, which are concurrently 
correcting other bit-planes, waiting for them to finish. 

 

 
(a) 

 
(b) 

Fig. 3. Rate distribution using (a) Gray-code or (b) proposed index scheme 

An alternative indexing strategy can be adopted to 
ensure that the numbers of bit-changes are spread more 
uniformly across all bit-planes, whilst having minimal 
impact on the R-D performance. Fig. 4 illustrates an 
example of the proposed index representation, set for the 
different quantization intervals when the coefficients with 
range [0, 211] are quantized at 2L = 16-levels. The proposed 
index representation scheme can easily be implemented by 
inserting an index mapping module after quantization, to 
map the quantized DC coefficients into the corresponding 
index listed in the last row of Fig. 4. The binary 
representation of the new indices is then considered for 
encoding and to compute the minimum rate for each bit-
plane. With the new index representation, it is clear that the 
adjacent intervals vary by just one bit, in order to avoid 
parallelization loss, whilst the different bit-plane levels share 
the same number of bit-changes.  

 

 
Fig. 4. Proposed index representation for 16-levels 

Fig. 3(b) illustrates the average number of packets 
required to recover the DC coefficients with the proposed 
index representation, after applying histogram equalization 
in Section 4. It is clear that the bit-planes, which are worked 

out simultaneously, are more likely to be recovered at the 
same rates, taking a much shorter time than that required by 
the LSBs for Gray code representation thus minimizing the 
decoding delays. 

A similar index scheme is also considered for the 
possible number of quantization levels 2L, with L{1, 2, … 
8}. The new indices are known a-priori by both the encoder 
and decoder and kept constant for all input sequences, thus 
no information needs to be exchanged for synchronization. 
The decoder uses such index sequence to generate the 
correct soft-input values and to recover the original DC 
coefficients after decoding. For the AC bands, the 
coefficients are first incremented by 2M-1, to obtain indices 
within the range [0, 2M), and then mapped into the new 
representation using the index sequence in Fig. 4.  

 
4. HISTOGRAM EQUALIZATION 

 
Fig. 5 depicts the histogram of coefficients in the DC band, 
and those in the first AC band, of all the frames in the 
Foreman sequence. Quantizing the bands at 16-levels clearly 
shows that the histograms are not uniformly distributed 
across the whole dynamic range. They have peaks over 
certain intervals, especially for the AC band which is heavily 
skewed towards the 9th interval (index 0). This non-
uniformity implies that some indices, and their neighboring 
bit-changes, have a higher probability of occurrence, creating 
an uneven probability of mismatch amongst bit-planes. 
Consider the histogram in Fig. 5(b) where the 9th interval has 
the highest probability of mismatch. Using the index 
representation in Fig. 4, the 1st and the 3rd bit-plane will still 
have a higher probability of mismatch compared to the rest.  
 

 
(a) 

 
(b) 

Fig. 5. Histograms for (a) DC or (b) AC coefficients in Foreman sequence.  
 

Since the histogram is sequence dependent, the index 
representation cannot be optimized to give a uniform 
distribution of bit-changes over any pre-defined region. It is 
therefore proposed to ensure that the resulting indices are 
uniformly distributed across the whole dynamic range 
instead. This can be achieved by rotating the index sequence 
in Fig. 4 by a pseudo-random number for each coefficient, 
and use the new sequence for mapping. Each occurrence of 
the same coefficient, mainly those occurring very frequently, 
will thus be assigned a different index representation, 
equalizing the histogram. The required pseudo-random 
numbers are obtained by generating a random number within 
the range [0, 128), for each coefficient location, at the 
design stage, and known a-priori for both sides of the codec. 
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The same random sequence is then used for the coefficient of 
different bands, quantization parameters (QPs) and sequences, 
to allow synchronization without extra overheads. The 
histograms in Fig. 6 show the occurrence of the new indices, 
when using the proposed algorithm for the DC and the first 
AC band of the Foreman sequence. The histograms are 
better distributed and thus even the number of bit-changes 
among bit-planes and decoding times. Such uniformity was 
seen for all bands of the Foreman and other sequences. 

 

    
(a) 

 
(b) 

Fig. 6. Histograms of indices assigned for (a) DC and (b) AC coefficients. 
 

 5. EXPERIMENTAL RESULTS 
 

The Akiyo, Hall Monitor, Coastguard and Foreman 
sequences, all encoded at 15 Hz with a QCIF resolution, 
were considered to study the effects of the proposed scheme 
on the R-D performance and decoding speed. All the four 
sequences were compressed using the parallel architecture in 
Fig. 1, with a GOP size of 2. The decoding times required 
when considering both Gray-codes [12] and the proposed 
index representation are listed in the third and fourth column 
of Tables I-IV, whilst the fifth column lists the percentage 
reduction in decoding time between them. For comparison 
purposes, the 1st column of the tables include the decoding 
times of the DISCOVER codec [13]. During all experiments, 
the WZ frames were quantized with the 4×4 quantization 
matrices in [13], whilst the key frames were encoded using 
H.264/AVC Intra with QPs chosen so that the key frames and 
WZ frames have a similar average quality. 

The timings in Tables I-IV were evaluated as the total 
time required to recover all the WZ frames of the sequence, 
when considering the early stopping criterion in [4] and start 
decoding with a minimum number of packets given in [8]. 
All measurements were performed on an Intel® Core™ i5-
750 Processor at 2.66 GHz with 12 GB RAM, using four 
separate cores to simulate the LDPCA modules at the 
decoder. The code was written using Visual Studio C++ 9.0 
and nothing was running on the machine, beside the 
operating system, when gathering decoding times (as in [21]). 

TABLE I: DECODING TIMES FOR THE AKIYO SEQUENCE 
QP DISCOVER Parallel [Gray] Parallel [Proposed] Δ time 
1 71.98 s 42.67 s 31.10 s 27.12 % 
2 111.64 s 78.19 s 53.24 s 31.91 % 
3 145.64 s 102.11 s 70.82 s 30.64 % 
4 190.56 s 131.83 s 95.16 s 27.82 % 
5 179.86 s 120.56 s 92.62 s 23.18 % 
6 261.17 s 169.70 s 135.83 s 19.96 % 
7 382.25 s 227.63 s 187.81 s 17.49 % 
8 734.82 s 436.35 s 375.10 s 14.04 %  

TABLE II: DECODING TIMES FOR THE HALL MONITOR SEQUENCE 

QP DISCOVER Parallel [Gray] Parallel [Proposed] Δ time 
1 128.83 s 81.01 s 61.58 s 23.98 % 
2 153.27 s 96.19 s 77.19 s 19.88 % 
3 161.64 s 103.67 s 77.07 s 25.54 % 
4 402.53 s 221.64 s 177.20 s 20.05 % 
5 325.88 s 181.83 s 154.37 s 15.10 % 
6 525.62 s 306.68 s 253.04 s 17.49 % 
7 687.80 s 387.95 s 312.18 s 19.53 % 
8 1022.22 s 561.10 s 468.29 s 16.54 %  
TABLE III: DECODING TIMES FOR THE COASTGUARD SEQUENCE 

QP DISCOVER Parallel [Gray] Parallel [Proposed] Δ time 
1 281.89 s 139.06 s 105.01 s 24.49 % 
2 359.75 s 198.02 s 137.14 s 29.68 % 
3 393.63 s 219.75 s 159.07 s 28.49 % 
4 727.34 s 387.82 s 329.18 s 19.07 % 
5 739.03 s 392.29 s 343.52 s 17.37 % 
6 1164.08 s 612.01 s 532.91 s 18.87 % 
7 1582.64 s 755.57 s 658.01 s 17.85 % 
8 2860.61 s 1381.92 s 1194.07 s 18.74 %  

TABLE IV: DECODING TIMES FOR THE FOREMAN SEQUENCE 
QP DISCOVER Parallel [Gray] Parallel [Proposed] Δ time 
1 584.86 s 274.68 s 206.27 s 24.91 % 
2 687.17 s 326.11 s 241.84 s 25.84 % 
3 803.64 s 394.51 s 322.62 s 18.22 % 
4 1501.76 s 723.44 s 580.84 s 19.71 % 
5 1709.35 s 824.50 s 674.55 s 18.19 % 
6 2385.18 s 1108.63 s 912.22 s 17.72 % 
7 2970.25 s 1352.52 s 1094.98 s 19.04 % 
8 4021.01 s 1767.23 s 1475.23 s 16.52 %  

 

Since both architectures generate identical SI and the 
same WZ indices, the quality of the resultant videos is the 
same. However, the proposed index assignment scheme 
distributes the rates more uniformly amongst the bit-planes, 
reducing decoding delays by up to 32% relative to the 
parallel architecture using Gray-codes [12]. The quality of 
the soft-input values is slightly degraded, with a marginal 
loss of 0.02dB, 0.03dB, 0.05dB and 0.06dB in the R-D 
performance of the respective sequences. These consider the 
numerical average difference, in terms of Bjøntegaard-Delta 
metric [22], between the R-D curves of the parallel 
architectures using either the Gray-code or the proposed 
index scheme. Due to space limitations, Fig. 7 shows only 
the R-D performance of the Foreman sequence, which 
suffers the highest degradation. This verifies that the loss is 
very negligible. 

 

 
Fig. 7. Rate-Distortion performance for the Foreman sequence. 
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6. CONCLUSION 
 
The non-uniform distribution of rates amongst bit-plane, 
characterized by the binary or Gray-code representations, 
and their influence on the performance of the parallel DVC 
architectures, were considered. A new index representation 
scheme, which could distribute the rates more uniformly 
amongst bit-planes, was then proposed to improve decoding 
speed. Experimental results show that the proposed method 
can reduce decoding time by up to 32% compared to previous 
architectures, incurring negligible loss in R-D performance. 
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