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ABSTRACT

This article presents a method to extract stellar spectra from

hyperspectral images of the MUSE instrument. Because of

the MUSE PSF (Point Spread Function) effect, stars are not

seen as dots but spread with a certain radius. In dense fields,

the information in a pixel can thus result from contributions

of different stars, which requires the use of a source separa-

tion method. We first derive the mixing model using known

information about the MUSE PSF, then propose a source sep-

aration method using a parametric model of the spatial PSF,

the FSF (Field Spread Function). Our method is based on the

positivity of the data, sources and FSF parameters. It alter-

nately estimates the star spectra, using a least square method

with positivity constraints, and the FSF parameters by a pro-

jected gradient descent algorithm. Very satisfactory results

are obtained with simulated but realistic MUSE data.

Index Terms— Semi-blind source separation, hyperspec-

tral images, spectra estimation, astrophysics.

1. INTRODUCTION

The work presented here is within the framework of the

MUSE (Multi Unit Spectroscopic Explorer) project. MUSE1

instrument will provide hyperspectral astrophysical images

of about 3500 bands. The development of new processing

methods is therefore required to permit a better exploitation

of MUSE data by scientists. One of these processing methods

is source separation which particularly concerns MUSE dense

stellar field images. In these images, stars are not point-like

objects but spread with a certain radius. This is because of the

PSF (Point Spread Function) due to the instrument and atmo-

spheric effects. As a result, each pixel in the observed image

can contain contributions from several stars. We thus need a

source separation method to unmix the observed spectra.

There exist three main classes of blind source separation

methods [1], essentially dealing with linear instantaneous in-

This work is part of the DAHLIA (Dedicated Algorithms for Hyperspec-

traL Imaging in Astronomy) project, founded by the French ANR agency.
1MUSE is a new generation integral field spectrograph, working in the

visible and near-infrared domain [465 nm, 930 nm]. It will be added to the

VLT (Very Large Telescope), in Paranal, Chile, by the end of 2013.

variant models: methods based on ICA (Independent Com-

ponent Analysis) [1], those exploiting positivity like NMF

(Non-negative Matrix Factorization) [2], and those based on

sparsity [1, 3]. However, as we will see in Section 2, our

model is linear but spectrally variant, which makes the use of

some classical methods difficult. We are also facing highly

correlated sources, which excludes the use of ICA. Besides,

because of the PSF spatial spreading effect, the sparsity-based

source separation methods are not suitable.

We thus propose a new approach exploiting the positivity

(≥ 0) of all data (including sources, parameters) and using a

parametric model for the mixing coefficients. Our method al-

ternately performs estimation steps for the star spectra, using

a least square algorithm with positivity constraints, and for the

mixing parameters by a projected gradient descent algorithm.

In Section 2, we present the mixing model first introduced

in [4] and show how it can be parametrized. Then, Section 3

presents our source separation method. In Section 4, we show

test results with realistic simulated data.

2. MODELLING

2.1. Assumptions about the PSF

The usual shift-invariance property is not satisfied by the

MUSE PSF. For an observed point-like object located at

(z, µ), its corresponding PSF at (p, λ) can be denoted by

hPSF
z,µ (p, λ), where p and z are 2D spatial coordinates, µ and

λ are spectral coordinates. In the following, we use some rel-

evant assumptions to derive a simplified but realistic mixing

model. These assumptions, based on a recent study [5] within

the framework of the MUSE project, are:

• A1: The PSF is separable into the spatial PSF, called FSF

(Field Spread Function), and the spectral PSF, called LSF

(Line Spread Function) : hPSF
z,µ (p, λ) = hFSF

z,µ (p)hLSF
z,µ (λ).

•A2: The LSF only spreads over a few spectral samples.

•A3: The FSF changes slowly spectrally.

2.2. Mixing model

We suppose stars are point-like objects in the sky before the

PSF effect. Lets’s denote by ei(λ) the spectrum of a star i

EUSIPCO 2013 1569742461
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located at the 2D spatial position zi, and by ei(λ)δ(p−zi) the

contribution of this star at the 2D spatial position p (where δ

is the Dirac impulse). After the PSF effect, the contribution

of this star in the observed data is:

yzi(p, λ) =

∫∫
ei(µ)δ(z − zi)h

PSF
z,µ (p, λ)dzdµ

=

∫

R

ei(µ)h
PSF
zi,µ

(p, λ)dµ. (1)

Assuming that the PSF is separable into the FSF and the LSF

(Assumption A1), we have

yzi(p, λ) =

∫

R

ei(µ)h
FSF
zi,µ

(p)hLSF
zi,µ

(λ)dµ. (2)

Due to Assumption A2, the LSF can be considered equal to

zero outside a small spectral interval with width 2K and cen-

tered on λ. This yields

yzi(p, λ) =

∫ λ+K

λ−K

ei(µ)h
FSF
zi,µ

(p)hLSF
zi,µ

(λ)dµ. (3)

Using Assumption A3, we can write hFSF
zi,µ

(p) ≃ hFSF
zi,λ

(p)
for µ ∈ [λ−K,λ+K]. We thus obtain

yzi(p, λ) = hFSF
zi,λ

(p)

∫ λ+K

λ−K

ei(µ)h
LSF
zi,µ

(λ)dµ. (4)

When a pixel contains contributions from S stars, its overall

value at each wavelength reads2:

y(p, λ) =

S∑

i=1

yzi(p, λ) =

S∑

i=1

hFSF
zi,λ

(p)

∫

R

ei(µ)h
LSF
zi,µ

(λ)dµ

=

S∑

i=1

mi(p, λ)xi(λ) (5)

where xi(λ) =
∫
R
ei(µ)h

LSF
zi,µ

(λ)dµ is the ith star spectrum

spectrally convolved by the LSF3 and mi(p, λ) = hFSF
zi,λ

(p).
This yields in matrix form at each wavelength λ (λ is removed

from notations for the sake of simplicity):

y = Mx (6)

with

◦ y = [y(p1, λ), . . . , y(pN , λ)]T : the vectorized observed im-

age at wavelength λ, where N is the number of pixels in the

considered field (T stands for Transpose).

◦ x = [x1(λ), . . . , xS(λ)]
T .

◦mi = [mi(p1, λ), . . . [mi(pN , λ)]T , the vectorized FSF for

2Integrating the LSF over the whole spectrum or just over the interval

[λ − K,λ + K] is the same because the LSF is equal to zero outside this

interval.
3We call it a “convolution” but note that it is a misnomer because, due

to the variability of the PSF, this integral does not correspond to the usual

definition of a convolution.

star i.

◦M = [m1 . . .mS ].
The obtained model (6) is thus linear instantaneous but

spectrally variant, because the mixing matrix M depends on

λ.

In reality, the observed data are noisy. The noise can be

approximated as an additive Gaussian, centred, spatially and

spectrally independent process. It is non stationary and, since

its generation is due to a Poissonian phenomenon, its vari-

ance is an increasing function of the signal intensity at each

point: the noise level is high where the signal level is high.

The entire model, for a given wavelength, can be written as

follows

y = Mx+ b (7)

with b ∼ N (0,Γ) and Γ = diag(σ2
1 , ..., σ

2
N ). The noise

variance depends on both pixel location and wavelength.

2.3. Model parametrisation

Thanks to work presented by colleagues in [5], we know that

the FSF can be modelled for each source i by a Moffat func-

tion with scale and shape parameters α and β. A coefficient

Mki of matrix M can thus be expressed as:

Mki =
β − 1

πα2

(
1 +

||pk − zi||2F
α2

)
−β

, α ≥ 0 , β > 1 (8)

where zi is the spatial position of source i, and pk the spatial

position of the kth pixel.

Therefore, for one given wavelength, the matrix M de-

pends on the (α, β) parameters and on the star locations. Note

that (α, β) depend on the wavelength.

3. PROPOSED METHOD : LSQ-GRD

At this stage, we assume that we know the location of every

star in the studied MUSE field, thanks to Hubble images4.

Therefore, in the model defined by (7-8), only the spectra and

the parameters (α, β) remain unknown and have to be esti-

mated for each wavelength. However, the final goal is only

the spectra estimation.

In the following, we first describe our method in the noise-

less case. We then explain in Section 3.5 how this method

must be modified in the noisy case.

3.1. Minimised criterion

Here is the minimised criterion, defined by a Frobenius norm,

for the noiseless case:

J =
1

2
‖ y −Mx ‖2F=

1

2
(y −Mx)T (y −Mx). (9)

4Hubble is a spatial telescope in orbit around the earth since 1990. It is

coupled with many spectrometers. This permits it to cover a spectral domain

spreading from the infra-red to near ultra-violet wavelengths.
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3.2. Proposed algorithm for one wavelength

The proposed algorithm is iterative. The estimation of the

star spectra and (α, β) is performed alternately using a least

square method with positivity constraints (for the spectra esti-

mation) and a projected gradient descent method with a fixed

step (for the (α, β) parameters). Our global algorithm is thus

called ”LSQ-Grd” for Least SQuare - Gradient.

LSQ-Grd Algorithm

• Initialisation: (α, β) (+ spectra)

• Repeat until convergence:

• Compute matrix M using the Moffat expression with

the current values of (α, β).

• Estimate x: by a least square method with positivity

constraints, with M fixed :

x← argmin
x

J, with x ≥ 0. (10)

• Estimate (α,β): by a projected gradient descent

method with a fixed positive step size ε, with x fixed:

• Repeat until the gradient descent convergence:

α ←

[
α− ε

∂J

∂α

]

P+

(11)

β ←

[
β − ε

∂J

∂β

]

P+

(12)

where [u]P+ corresponds to the projection of u
on the interval P+.

The gradient descent here is called “projected” since, for

each iteration, the values of (α, β) are projected on the inter-

val P+ = [1, 5] in order to fulfil the positivity constraint and

to satisfy the conditions related to our data5. In practice, if the

estimated value is outside P+, it takes the value of the nearest

limit.

3.3. Initialisation

The above method is applicable to every wavelength sepa-

rately. However, in practice, we apply it sequentially to the

different wavelengths. The algorithm initialisation is thus

handled as follows (for every wavelength):

• For the beginning of the global LSQ-Grd algorithm:

• (α, β) are initialised, at each wavelength, with their val-

ues obtained at the previous wavelength. This permits

us to accelerate convergence, since (α, β) vary slowly

spectrally. For the first wavelength, we assume know-

ing the interval of variations of (α, β) and initialize ran-

domly in this interval.

• The explicit initialisation of spectra is not necessary,

since it is handled by the Matlab ’lsqnonneg’ function

used here to compute the least square estimate of x in

the above algorithm.

5For our studied data, α and β vary between 1 and 2.2, we thus chose an

interval P+ that satisfies this condition without being too constrained.

• For the beginning of each iteration of LSQ-Grd:

• (α, β) in the gradient algorithm are initialized with

their estimated values in the previous iteration of the

global algorithm.

• The spectra initialization is not necessary.

3.4. Gradient calculation for (α, β) estimation

We rewrite J in a scalar form for computing its gradient:

J =
1

2

N∑

k=1

(yk − (Mx)k)
2 =

1

2

N∑

k=1

(
yk −

S∑

i=1

Mkixi

)2

(13)

with Mki element (k, i) of matrix M , yk element k of vector

y and xi element i of vector x.

The derivatives of J with respect to α and β are:

∂J

∂α
=

∑

k

∑

i

∂J

∂Mki

∂Mki

∂α
(14)

∂J

∂β
=

∑

k

∑

i

∂J

∂Mki

∂Mki

∂β
. (15)

Derivation of (13) with respect to matrix M gives:
∂J

∂Mki

= (yk − (Mx)k) (−xi) = −
[
(y −Mx)xT

]
ki
.

(16)

Some calculations then yield:

∂J

∂α
= −

[
∂M

∂α
x

]T
(y −Mx) (17)

∂J

∂β
= −

[
∂M

∂β
x

]T
(y −Mx). (18)

To compute
∂M

∂α
and

∂M

∂β
, we use the expression of Mki as

a function of (α, β), given by Equation (8). We thus obtain6:

∂Mki

∂α
=

2(β − 1)

πα3

(
1 +

Z

α2

)
−β−1(

β − 1

α2
Z − 1

)

∂Mki

∂β
=

1

πα2

(
1 +

Z

α2

)
−β (

1− (β − 1) ln

(
1 +

Z

α2

))

with Z = ||pk − zi||
2
F .

3.5. Noisy case

We here take into account the noise variance for each spatial

location7:

J =
1

2
‖ y−Mx ‖2W=

1

2
(y −Mx)TW (y−Mx) (19)

6We use:
∂(a−x)

∂x
= −a−x ln(a).

7For noisy data, the criterion can also be written as J = 1

2
‖ ỹ −

M̃x ‖2
F

, with ỹ = W
1

2 y and M̃ = W
1

2 M . Thus, ỹ and M̃ can

be used as the input arguments of Matlab ’lsqnonneg’ function in the noisy

case.
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Fig. 1. The studied field and its neighbourhood

with W = (Γ̂)−1 and Γ̂ an available estimate of the diagonal

covariance matrix Γ. We thus have:

∂J

∂α
= −

[
∂M

∂α
x

]T
W (y −Mx) (20)

∂J

∂β
= −

[
∂M

∂β
x

]T
W (y −Mx). (21)

4. TEST RESULTS

4.1. Data description

We work with realistic simulated data provided in the frame-

work of the MUSE project. We here present results obtained

with the small field shown in Figure 1. The coloured part of

this image corresponds to the 16x16-pixel studied field and

the dots show the actual star positions within the field (11

stars) and in its neighbourhood. Each pixel represents a 0.2 x

0.2 arcsec2 region. For this field, we have available a noise-

less data cube and a noisy one characterized by a Signal to

Noise Ratio (SNR) of 28 dB. An estimate of the noise vari-

ance8 and the necessary data to evaluate results are available

too.

Because of the FSF effect, it is important to take into ac-

count stars in the neighbourhood of the studied field to obtain

a good estimation of the spectra of the stars inside the field

[4]. We here take into account stars in a neighbourhood de-

limited by a radius of 1.4 arcsec around the field.

4.2. Performance criteria

To evaluate the performance, we use the following criteria:

• The total relative reconstruction error:

Errtot = meanλ

(
‖y − M̂x̂‖F

‖y‖F

)
. (22)

• The relative errors computed over the entire spectra:

Errsi =
‖si − ŝi‖F
‖si‖F

(23)

where si is the entire spectrum of star i. We also use
its mean: Errs = meani(Errsi ).

8The variance estimates will be provided by the DRS (Data Reduction

Software) of MUSE.

• The relative error for the FSF:

ErrM = meanλ

(
‖M − M̂‖F
‖M‖F

)
. (24)

The notations with ”̂” correspond to the estimates. Errors for

spectra and FSF only concern the stars inside the field.

4.3. Noiseless data

We first present results obtained with the noiseless data, to

then better evaluate the noise impact.

Spectra are here estimated with a mean error of 0.8 %.

The spectra estimation is thus almost perfect. The error over

the FSF is ErrM = 1.4%, so the (α, β) estimation is very

satisfactory. The total error is also small (Errtot < 1%),

which shows that the algorithm converges correctly.

4.4. Noisy realistic data

We here get for the FSF ErrM = 1.8%, which is close to

the value obtained in the noiseless case. This permits us to

conclude that (α, β) estimation is satisfactory. Concerning

the spectra estimation, we can see in Figure 2 the obtained

errors Errsi for the 11 stars inside the field. The mean er-

ror is 7.6%. The spectra estimation is thus less precise here

and there is a disparity between the estimation qualities of the

different spectra. Figure 3 shows the estimated spectra (blue)

and the true ones (red)9. The spectra corresponding to a high

estimation error in Fig. 2 are noisy.

We are now going to analyse the disparity in spectra esti-

mation, which is due to noise properties.

Figure 4 shows the star locations in the studied field. The

star numbers here correspond to those in the previous figures.

Here is our interpretation of results for the noisy estimations:

• stars 1 and 11: they are in the edge of the field, the informa-

tion in the field for them is thus incomplete, which can explain

the high obtained errors.

• stars 3, 5, 7 and 9: they are situated near a much brighter star

(stars 2, 6, 6 and 10 respectively). The star magnitudes can be

read on the axes in Figure 3. In this case, the concerned spec-

tra are “drowned” in noise with a high level compared with

their magnitude. Indeed, as stated before, MUSE noise level

increases with the signal level in each pixel; at the location

of a very bright star, the noise is thus high and neighbouring

stars with low magnitude would be hardly well estimated.

9The removed spectral bands correspond to a very noisy zone, since it has

been used for the calibration with a laser star.

1 2 3 4 5 6 7 8 9 10 11
0

0.05

0.1

0.15

0.2

the 11 field spectra

Fig. 2. Estimation error for the 11 spectra - noisy data
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Fig. 3. Spectra inside the field: the true spectra (red) and

estimated ones (blue) - noisy data

Fig. 4. Location of the stars in the field

Concerning the well estimated spectra, they correspond to

stars that have a high magnitude or isolated stars.

To finally show the achievement of our method (even if

some estimated spectra are noisy), we compare the observed

(unprocessed) data and our estimates. Figure 5 shows, for

each star:

• in black: the spectrum extracted from the observed data

cube at the pixel corresponding to the star location.

• in red: the true spectrum, multiplied by the true FSF coef-

ficient corresponding to the star location. This multiplication

allows the magnitude of the true spectrum to be calibrated

with that of the observed data (i.e. the black spectrum).

• in blue: the estimated spectrum, multiplied by the corre-
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Fig. 5. Comparison between estimated spectra (blue), true

spectra (red) and pixel spectra directly extracted from the ob-

served cube at pixels corresponding to star location (black)

sponding estimated FSF coefficient.

Figure 5 shows that even for the most noisy estimated

spectra, the estimation results are much better than the ob-

served data. The method permits one to obtain estimated

spectra that have the right magnitude and a good continuum

shape. Besides, for some of the spectra, the absorption lines

are well estimated. Results are thus very satisfactory for noisy

realistic data.

5. CONCLUSION AND FUTURE WORK

In this paper, we presented a semi-blind source separation

method to extract stellar spectra from MUSE dense field

hyperspectral images. We started by deriving the mixing

model using information about the PSF. We then proposed an

adapted positivity-based method using a parametric mixing

model, and validated it on realistic simulated MUSE data.

As future work, we intend to add some improvements to

the method, such as using a Newton version of the gradient

descent algorithm. It would also be interesting to study the

sensitivity of the method to errors on the star positions.
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