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ABSTRACT

In this paper a general combination of sparse image priors is ap-
plied to Bayesian Compressed Sensing (CS) reconstruction of digital
images. A simultaneous deblurring and CS reconstruction variatio-
nal algorithm is derived. The application of the new algorithm, to
both blurred and non-blurred images at different compression ratios,
is studied. The new method is applied to Passive Millimeter-Wave
Imaging (PMWI) CS. and its performance compared to state of the
art CS reconstruction methods.

Index Terms— image processing, compressed sensing, mil-
limeter wave imaging, Bayesian modeling, Bayesian inference

1. INTRODUCTION
It is well known that CS theory allows the recovery of sparse im-

ages from a limited number of incoherent observations (see [1]). The
images are recovered by applying a CS method (see [2–4]), which
typically enforces fidelity to the observations and sparsity of the un-
known. In this paper we are interested in Bayesian CS (see [5, 6]).
Bayesian CS enforces sparsity of the solutions through the appli-
cation of sparse image priors. An image prior is considered to be
sparse when it is super-Gaussian [7], i.e., compared to the Gaussian
distribution, it has heavier tails, it is more peaked, and has a positive
excess kurtosis (see [8]).

In this paper a general combination of sparse image priors is
applied to Bayesian CS. This sparse prior combination, is based on
the general formulation proposed in [8]) which provides flexibility in
image modeling and algorithm design. A CS method, applicable to
blurred images, will be derived, and its effectiveness both on blurred
and unblurred images evaluated. The new method will be applied to
PMWI.

One of the fields where CS has been successfully applied is
PMWI. PMWI technology is based on the passive detection of nat-
urally occurring millimeter-wave radiation from a scene [9]. PMWI
is attracting increasing interest, because millimeter-waves are less
affected by adverse conditions such as, clouds, fog, smoke, and dust,
than visible or infrared light [10]. The limitations of current PMWI
systems, in terms of the tradeoff between Signal-to-Noise Ratio
(SNR) and acquisition time, and the expensiveness of radiometer
devices, motivated the proposition of a novel single pixel PMWI
system, based on the CS theory [11–13].

∗This work was supported in part by the Programa de Iniciación a la In-
vestigación de la UGR, by the Spanish Ministry of Economy and Competi-
tiveness under project TIN2010-15137 and by the European Regional Devel-
opment Fund (FEDER).

The rest of this paper is organized as follows. Section 2 descri-
bes the problem formulation, and Section 3 its modeling within the
Bayesian framework. The Bayesian inference and the proposed CS
algorithm are described in Section 4. In Section 5 we present some
experimental results. Finally, Section 6 concludes the paper.

2. PROBLEM FORMULATION
The compressed sensing process is usually formulated as fol-

lows,
y = ΦX + n (1)

where y is the M × 1 observations vector, X the N × 1 vector
representing the unknown image of sizeN = p×q, Φ is theM×N
measurement matrix, and n the M × 1 vector of observation noise,
assumed to be white Gaussian with known variance β−1.

The application of a CS method allows the recovery of the un-
known X image, even for a number of observations M << N , if
the X image is compressible in some basis, incoherent with the row
vectors of the Φ measurement matrix.

In this paper we assume that X is a blurred version of the origi-
nal p× q image x, which we want to recover,

X = Hx , (2)

where H is an N ×N convolution operator.

3. BAYESIAN MODELS
Given the degradation model of Eq. (1), the probability density

for the observation y given the original image x, is

p(y|x) ∝ β
M
2 exp

{
−β

2
‖ y −ΦHx ‖2

}
. (3)

In this paper we utilize the following combination of general
sparse priors

p(x) =

d∏
j=1

N∏
i=1

p(zj(i)) , (4)

on the unknown filtered images set {z} = {z1, .., zd}, where zj =
Fjx, and Fj are convolution operators. The four first order differ-
ence filters have been utilized here for the Fj , but other configura-
tions are also possible. In Eq. (4) zj(i)) denotes the i-th component
of the zj vector. Notice that in Eq. (4) we are approximating the
partition function as an independent product of partition functions.

The general sparse priors p(zj(i)) of Eq.(4) are defined as
p(zj(i)) = γ exp (−αρ(zj(i))) , (5)

where γ is a normalization constant, that is γ−1 =
∫

exp [−αρ(u)]
du, ρ(.) is a penalty function symmetric around 0, and α > 0 is a
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Table 1: Different choices for the penalty function.

Label ρ(s) ρ′(s)/|s|
`p

1
p
|s|p |s|p−2

log log(ε+ |s|) (ε+ |s|)−1|s|−1

exp −σr exp
(
− |s|

2

2σr

)
exp

(
− |s|

2

2σr

)

parameter regulating the intensity of the prior. Sparsity is achieved
when the function ρ leads to the suppression of most coefficients
zj(i) while preserving an small number of important features. An
important class of sparsity promoting priors are the so called Super
Gaussian (SG) distributions.

Formally, for p(u) = γ exp [−αρ(u)] to be SG, the function
ρ(
√
s) has to be increasing and concave for s ∈ (0,∞) [7]. This

condition is equivalent to ρ′(s)/s being decreasing on (0,∞). Ta-
ble 1 shows some penalty functions, corresponding to SG distribu-
tions, proposed in [8], which will be used in this paper.

Being p(zj(i)) in Eq. (5) SG, it can be expressed as an Scale
Mixture of Gaussian (SMG) (see [7]), i.e.

p(zj(i)) =

∫
N (zj(i)|0, 1/ξ)p(ξ) dξ . (6)

Using this SMG representation, and introducing {η} = {η1, ..
,ηd}, with ηj positive random variables, we transform the general
sparse prior p(x) of Eq.(4) to the Gaussian form

p({η},x) =

d∏
j=1

N∏
i=1

N (zj(i)|0, 1/ηj(i))p(ηj(i)) . (7)

Combining Eqs. (3), and (7) we obtain the following joint prob-
ability distribution

p(Θ,y) = p(y|x)p({η},x) , (8)

where Θ = {{η},x} denote the set of all our unknowns. The esti-
mation of the α parameter of Eq. (5) is not studied in this paper and
will be adjusted experimentally.

4. VARIATIONAL BAYESIAN INFERENCE
The Bayesian inference will be based on the posterior distri-

bution p(Θ | y) which can be variationally approximated by the
q(Θ) =

∏
ζ∈Θ q(ζ) distribution, with q(ζ) given by

q(ζ) ∝ exp
(
〈log [p(Θ,y)]〉Θζ

)
, (9)

with ζ ∈ {{η},x}, and Θζ denotes Θ with ζ removed, and
Eq(Θζ) [·] = 〈·〉Θζ . In the following, the subscript of the expected
value will be removed when it is clear from the context.

From Eq.(9), we obtain for q(x)

q(x) ∝ exp
{

log(p(y|x)) + E [log(p({η},x))]{η}

}
, (10)

which is the multivariate Gaussian q(x) = N (x|x̂, covq(x)) with

cov−1
q(x) =

d∑
j=1

Ftj diag(wj)Fj + βHtΦtΦH, (11)

and
x̂ = β covq(x)H

tΦty. (12)

In Eq.(11), the wj for j = 1, . . . , d, are N × 1 vectors with
components wj(i), for i = 1, . . . , N ,

wj(i) = 〈ηj(i)〉ηj(i) =

∫
ηj(i)q(ηj(i)) dηj(i) . (13)

From Eq. (9), we obtain for the {η} variables,
q(ηj(i)) = p(ηj(i)|zj(i) = νj(i)) , (14)

with νj(i) =
√
〈z2
j (i)〉

q(x)
. (15)

and 〈z2
j (i)〉

q(x)
given by

〈z2
j (i)〉

q(x)
= 〈zj(i)〉2q(x) + tr(covq(x)F

t
jJ
iiFj), (16)

where Jii is anN×N matrix with all its elements equal to 0, except
the i-th entry of its diagonal, which is equal to 1. As covq(x) can not
be exactly obtained, its Jacobi approximation has been used in this
paper.

Let us finally proceed to calculate wj(i) in Eq. (13). Notice that
the whole distribution q(ηj(i)) is not required and only its mean is
utilized in the iterative process. Using Eq. (6), for p(zj(i)),
∂p(s)

∂s

∣∣∣∣
s=νj(i)

= −νj(i)
∫
ηj(i)N (νj(i)|0, 1/ηj(i))p(ηj(i)) dηj(i)

= −νj(i)p(νj(i))

∫
ηj(i)p(ηj(i)|νj(i)) dηj(i)

= −νj(i) p(νj(i)) wj(i) . (17)

Furthermore using Eq. (5) we have ∂p(s)
∂s

= −αρ′(s)p(s). Then
utilizing Eq (17) we obtain

wj(i) = α
ρ′(νj(i))

|νj(i)|
. (18)

The values of ρ′(s)/|s| for the penalty functions considered in this
paper can be found in the right column of table 1.

The proposed algorithm is summarized below in Algorithm 1.

Algorithm 1 Compressed sensing using a General Sparse Image Pri-
or Combination

Require: Values for α and β, and an initial value x(0) for the un-
known image x.
Set k = 1 and cov

(0)

q(x) = 0.
while convergence criterion is not met do

1. Compute w
(k)
j using Eqs (15) & (18).

2. Calculate
(

cov
(k)

q(x)

)−1

using Eq. (11).

3. Estimate the x̂(k) image by solving Eq.(12).
4. Set k = k + 1.

For this iterative Algorithm 1, the initial value x(0) = 1
c
HtΦty,

has been utilized, where c is the square root of the mean value of the
diagonal elements of the HtΦtΦH matrix. In step 3 of Algorithm 1,
Eq.(12) has been solved by applying a Conjugate Gradient (CG)
algorithm. The used convergence criterion for Algorithm 1 has been
‖x(n)−x(n−1)‖2

‖x(n−1)‖2 < 10−5 and n > 3, or n > 30.

5. EXPERIMENTAL RESULTS

A number of experiments have been performed using the pro-
posed Algorithm 1, with the penalty functions shown in table 1,
which will be referred henceforth as Alg1-`0.8 for the `p penalty
function with p = 0.8, Alg1-`1 for the `p penalty function with p =
1, Alg1-log for the log penalty function, and Alg1-exp for the exp
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Fig. 1: PSNR of the phantom image reconstructions, obtained using
the different methods, as a function of the CS compression ratio.

penalty function, respectively. The results obtained have been com-
pared with the obtained using the NF4 combination of non-stationary
edge-preserving priors in [14, 15], and also with the CS method `1-
MAGIC in [2], using a TV prior. In this paper the Peak Signal to
Noise Ratio (PSNR) comparison metric has been adopted.

In the first experiment, the CS process described by Eq.(1) has
been applied to the synthetic 64 × 64 phantom image shown in fig-
ure 2(a). In this experiment the elements of the Φ measurement ma-
trix have been randomly drawn from a Gaussian process of mean 0
and variance 1/N . Φ matrices of differentM×N sizes, correspond-
ing to compression ratios in the range (0.3, 0.9) have been genera-
ted, and applied to the X image. In this experiment the images are
not blurred, i.e. H = I in Eq.(2), and X = x. White Gaussian noise
of 40 dB has been added to the obtained measures. Nine noise re-
alizations per experiment have been generated, and the mean PSNR
values, with their standard deviations, of the restorations obtained
using the different methods represented in figure 1.

The reconstructions obtained in this first experiment of CS in the
absence of blurring, using the considered methods, which are shown
in figures 2(b-f), are visually indistinguishable from the original im-
age in figure 2(a). The best results are the obtained using Alg1-log
and NF4.

In a second experiment the same procedure described above has
been applied to the blurred image shown in figure 4(a), resulting
from the application of a Gaussian blur of variance 3.5 and 9 × 9
support, to the phantom image of figure 2(a). The different methods
have been applied to obtain reconstructions of the original unblurred
image and the obtained PSNR values, as a function of the compres-
sion ratio, depicted in figure 3. It can be observed in figure 3 that the
results of the application of the proposed method, specially Alg1-
log, are better than the obtained using NF4 and `1-MAGIC. Never-
theless the results shown in figure 3 for the blurred image, are worse
in PSNR terms that the ones shown in figure 1 for the unblurred im-
age.

Figures 4(b-f) show the reconstructions obtained using the dif-
ferent methods for a compression ratio of 0.5. It can be observed in
those reconstructions that the thickness of the different regions, spe-
cially the skull region, are more similar to that of the blurred image
of figure 4(a), than to the original image of figure 2(a). Thus, it can
be asserted that the deblurring effectiveness of these CS methods has
been somewhat limited.

One of the reasons for the use in this section of the phantom im-

(a) (b) (c)

(d) (e) (f)

Fig. 2: (a) 64× 64 phantom image. Reconstructions, for a 0.5 com-
pression ratio, obtained using: (b) Alg1-log (64 dB), (c) Alg1-`1
(47.1 dB), (d) Alg1-exp (49.1 dB), (e) NF4 (57.1 dB) and (f) `1-
MAGIC (42.8 dB).

Fig. 3: PSNR of the phantom image reconstructions, in the presence
of blurring, obtained using the different methods, as a function of the
CS compression ratio.

(a) (b) (c)

(d) (e) (f)

Fig. 4: (a) blurred phantom image. Reconstructions, for a 0.5 com-
pression ratio, obtained using: (b) Alg1-log (22.5 dB), (c) Alg1-`1
(22.1 dB), (d) Alg1-exp (21.5 dB), (e) NF4 (21.3 dB) and (f) `1-
MAGIC (21.3 dB).
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(a) (b) (c)

(d) (e) (f)

Fig. 5: (a) Scissors 50×50 PMWI image from [12]. Reconstructions,
for a 0.4 compression ratio, obtained using: (b) Alg1-log (33.8 dB),
(c) Alg1-`1 (35.3 dB), (d) Alg1-exp (35.2 dB), (e) NF4 (34.6 dB)
and (f) `1-MAGIC (34.7 dB).

age, with its flat regions, is its similarity to the typical PMW images,
like the one shown in figure 5(a). In the third experiment measures
from this image have been obtained using an orthogonal Φ measure-
ment matrix constructed from row vectors of the discrete 2D Fouri-
er basis, to which white Gaussian noise of 40 dB has been added.
Figures 5(b-f) show the reconstructions obtained using the different
methods for a compression ratio of 0.4. In this case the best recons-
tructions in terms of PSNR have been obtained using Alg1-`1 and
Alg1-exp, although the reconstructions obtained using `1-MAGIC,
NF4 and Alg1-log are also good.

In the fourth experiment, we finally study a more textured image,
like the 128 × 128 crop of the Lena image in figure 6(a). Measures
have been obtained using a Fourier basis Φ matrix, to which white
Gaussian noise of 40 dB has been added. Figures 6(b-d) show the re-
constructions obtained using the different methods for a compression
ratio of 0.4. The best reconstructions in terms of PSNR are the ones
provided by Alg1-log and NF4. All these reconstructions present a
good visual quality, though some fine textures, for example in the
ribbon of the hat, have been lost.

6. CONCLUSIONS

In this paper the application of a general combination of sparse
image priors to Bayesian CS has been studied, and a simultaneous
deblurring and CS reconstruction variational algorithm has been de-
rived. The new algorithm performs better than state of the art CS
methods, both on flat by regions images, like the typical in PMWI,
and on more textured images.
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(a) (b)

(c) (d)

Fig. 6: (a) 128× 128 crop of the Lena image. Reconstructions, for a 0.4 compression ratio, obtained using: (b) Alg1-log (37.8 dB), (c) NF4
(37.6 dB) and (d) `1-MAGIC (36.9 dB).
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