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ABSTRACT
This work presents a relaxation-based multi-pitch estima-
tion technique for harmonic signals suffering from inhar-
monicity. Different from most earlier works, the proposed
method does not require a priori knowledge of the number
of sources present, nor of their respective number of har-
monics, or the inharmonicity structure of the expected de-
viations. Using a recent group-sparse multi-pitch estima-
tion method to form initial coarse pitch estimates, the num-
ber of sources and their harmonics are estimated using a
BIC-based formulation, whereafter an iterative, relaxation-
based, technique is formed to separately estimate the inhar-
monicity of each source using a recently proposed robust
single-pitch estimation technique. The proposed algorithm
is evaluated and compared to other existing methods using
both simulated and real audio signals, clearly illustrating the
improved performance.

1. INTRODUCTION

The estimation of the fundamental frequency, or pitch, of
harmonically related sinusoidal signals is a problem find-
ing applications in a wide range of applications, such as,
for instance, electrocardiography (ECG), parametric coding
of audio and speech, automatic music transcription, musical
genre classification, tuning of musical instruments, and sep-
aration and enhancement of audio and speech sources, and
the topic has attracted a notable attention during the recent
decades (see, e.g., [1, 2] and the references therein). Com-
monly, the pitch estimate is formed assuming only the pres-
ence of a single source, i.e., signals containing only a single
fundamental frequency and its harmonics, often assuming
a priori knowledge also of the number of harmonics of the
source, using some form of similarity measures, such as the
cross-correlation, cepstrum, or the average squared differ-
ence function, or being based on second order statistics (see,
for example, [1–4]). Furthermore, such estimators typically
also assume that the harmonics are formed as exact integer
multiples of the fundamental frequency (see, e.g., [5, 6]).
However, this is not always the case, and the deviation of
the higher frequencies from exact integer multiples of the
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fundamental frequency, a phenomenon called inharmonic-
ity, is often observed in real-world signals. For instance, it
is well known that inharmonicity arises in piano tones due
to the stiffness in the piano strings [7]. Inharmonicity has
also been considered in the modeling and coding of speech
signals, and several different models of inharmonicity have
been developed [8, 9], as, if not properly compensated for,
the frequency deviations will lead to poor amplitude and
pitch estimates [10]. To alleviate this problem, several ro-
bust single-source fundamental frequency estimation algo-
rithms have been proposed in the recent literature, allowing
for inharmonicity in the observed signal, both being based
on a known frequency deviation function that depend func-
tionally on a single unknown stiffness parameter [4,11–13],
or using some form of robust formulation to allow for an
unstructured perturbations [10, 14]. In this work, we con-
sider the combination of these problems, treating the joint
estimation of the fundamental frequencies of an unknown
number of sources, each with an unknown number of har-
monics, suffering from some form of unstructured inhar-
monicity perturbations.

2. SIGNAL MODEL

Consider a measured (complex-valued) signal, x(n), con-
sisting ofK separate sources, with each source being formed
as a sum of harmonically related sinusoids, such that (see
also [1])

x(n) =

K∑
k=1

Lk∑
`=1

a`,ke
jω`,kn + e(n) (1)

for n = 1, . . . , N , where Lk denotes the model order of
the kth source, and a`,k = A`,ke

iφ`,k is the complex-valued
amplitude of the `th component of this source, with A`,k ≥
0, φ`,k, and ω`,k denoting the (real-valued) amplitude, phase,
and angular frequency of the kth source’s `th component,
and e(n) is a complex-valued circularly symmetric white
Gaussian noise. Commonly, a regular harmonic structure is
assumed, such that ω`,k = `ω0,k, for ` = 1, . . . , Lk, where
ω0,k denotes the fundamental frequency of the kth source,
whereas for signals exhibiting inharmonicity, such as sig-
nals originating from a stiff stringed instrument, it is com-
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mon to use a parametric inharmonicity model, such that [15]

ω`,k(Bk) = `ω0,k

√
1 +Bk`2 (2)

where Bk is the stiffness, or inharmonicity, coefficient of
source k. Typically, even for stringed instruments, the stiff-
ness coefficient is unknown and needs to be estimated from
the data or set based on physical properties of the source.
However, in general, many forms of sources will exhibit a
more irregular inharmonicity, which is then more properly
modeled as an unknown frequency perturbation, such that

ω`,k(∆`,k) = `ω0,k + ∆`,k (3)

where ∆`,k denotes the perturbation of the `th harmonic, of
the kth source.

3. ESTIMATION ALGORITHM

In order to allow for both an unknown number of signal
sources, and the number of their harmonics, as well as the
general inharmonicity model in (3), we introduce a relaxation-
based estimation scheme that combines the recent multi-
pitch PEBS estimation method, presented in [16], which
allows for the estimation of the fundamental frequency of
perfectly harmonically related sources, with the RCP inhar-
monicity estimation method, proposed in [14], which allows
for the estimation of a single fundamental frequency, allow-
ing for the here considered general inharmonicity model.
The resulting estimation scheme is accomplished using a 4-
step procedure, where a set of candidate pitches and their
model order is initially formed using PEBS. Then, in a sec-
ond step, a BIC-based order estimation scheme determines
which of these candidate pitches that are likely present in
the signal, as well as refines the estimate of the number of
harmonics for each source, whereafter, in a third step, an it-
erative greedy estimation procedure forms refined pitch es-
timates, allowing for a general inharmonicity, using RCP.
Finally, in the fourth step, the set of pitch frequencies are
refined using a least-squares gradient step. A schematic
overview of the proposed algorithm is presented in Algo-
rithm 1. In order to detail the above summarized estimation
steps, let

y =
[
x(1) · · · x(N)

]T
(4)

which implies that

y =
[
Z1 . . . ZK

] a1

...
aK

+ e (5)

where e has been formed similar to y, and

Zk =
[
z(ω0,k) · · · z(ωLk,k)

]
(6)

z(ω) =
[

1 ejω · · · ejω(N−1)
]T

(7)

ak =
[
a1,k · · · aLk,k

]T
(8)

Algorithm 1 Outline of proposed method
STEP 1 : Estimate a set of candidate pitches and their
model orders, Lk, using (9) and (13).
STEP 2 : Determine the likely candidate frequencies us-
ing (14).
STEP 3 :
while not converged do

for k = 1 to K̂ do
Subtract all but source k from the signal
Estimate ω0,k and ω0,l, l ∈ [1, L̂k], using RCP.

end for
end while
STEP 4 : Gradient step

with (·)T denoting the transpose. Then, in order to form the
initial coarse pitch estimate, we apply the PEBS algorithm,
which exploits a group sparse modeling approach, such that,
for each candidate pitch, the harmonically related frequency
components are grouped into a block, whereafter the blocks
best modeling the signal are found as [16]

min
a

1

2
‖y −Wa‖22 + λ‖a‖1 + α

P∑
k=1

√
∆k‖ak‖2 (9)

where ‖ · ‖p denotes the p-norm, λ and α are tuning param-
eters which decide how the penalties are weighted, ∆k is
the number of harmonics in block k, P the number of con-
sidered frequencies, W a matrix containing blocks of the
Vandermonde matrices, Zk, which represent each possible
source, and a is a vector consisting of the amplitudes of all
the considered blocks, i.e.,

Zk =
[
z(ωk) · · · z(ωkLk)

]
(10)

W =
[
Z1 · · · ZP

]
(11)

a =
[
aT1 · · · aTP

]T
(12)

Thus, the minimization is formed such that the distance be-
tween the measured signal, y, and all considered blocks of
candidate pitch frequencies, and their harmonics, while be-
ing penalized by such that the optimization attempts to min-
imize the number of blocks having a non-zero constitution,
as well as penalizing non-full blocks (in order to limit the
halfing/doubling problem). As noted in [16], the restriction
of the allowed frequency range implies that the number of
harmonics for each source, Lk, are restricted as a function
of the fundamental frequency, such that Lk < b2π/ωkc,
where b·c denotes the round-down to nearest integer oper-
ation. Setting the maximum allowed number of harmon-
ics to Lmax, the normalization ∆k, introduced to avoid the
otherwise natural tendency to always favor lower candidate
frequencies over the blocks corresponding to their double
frequencies, is selected as ∆k = min(Lmax, Lk). The re-
sulting amplitude vector, a, thus forms an estimate of the
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Fig. 1. The RMSE of the discussed estimators as a function
of the SNR.

candidate pitches, with the kth index in a corresponding
to the pitch candidate ωk. As we are here, different from
in [16], considering sources suffering from inharmonicity,
it is important to note that the considered grid of possible
pitch candidates should be selected as coarse set, as for on
a fine grid, the inharmonicity structure will result in that
the amplitude vector, a, will suffer from line-splitting, such
that closely spaced candidate pitches will be deemed to well
model the source, as both pitch frequencies will, due to the
inharmonicity, fit into (9). Using a coarse initial candidate
grid avoids this problem for all cases when the pitches may
be considered to be well separated. In the second step, us-
ing the so-obtained block amplitude estimate, we refine the
estimate of the number of harmonics for each of the candi-
date pitches. These are formed using the initial block size
of Lk = b2π/ωkc, but may be reduced to a more realistic
model order by omitting weak harmonics from the blocks.
Here, we do so by reducing the active block size for the kth
candidate pitch, L̂k, such that

L̂k =

min(Lmax, Lk)∑
`=1

u
[
a`,k − 0.01 max(ak)

]
(13)

where a`,k is the `th amplitude in the vector ak, and u[x]
is the indicator function taking the values one if x > 0,
and otherwise zero, i.e., only those amplitudes larger than
a percentage of the largest amplitude in the block are con-
sidered significant. Clearly, this is a rather ad hoc measure,
but one that, in our experience, works well to give a rea-
sonable rough model order estimate for each block. Using
the thus resulting rough estimate of the number of signif-
icant harmonics in each block, the number of likely can-
didate pitches, K̂, is selected from ak using the BIC-style
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Fig. 2. The RMSE of the discussed estimators as a function
of the relative level of inharmonicity.

selection rule formed as the minimum of [16] (see also [17])

BIC(`) = 2N ln(σ2
y,`) + (5H` + 1)ln(N) (14)

whereH` =
∑`
k=1 L̂k and σ2

y,k is the variance of the signal
after the k first harmonic components have been removed,
over the range of considered sources k ∈ [1,Kmax], where
Kmax denotes the assumed largest number of sources. The
candidate pitch frequencies are then selected as the largest
(absolute) valued candidate pitches among ak.Then, having
determined the likely number of sources, K̂, and the num-
ber of their harmonics, L̂k, we proceed to the third, iterative,
step, wherein each candidate pitch estimate is refined to al-
low for the general inharmonicity model in (3). This is done
by approximating the multi-pitch estimation problem as a
set of single-pitch estimation problem, where each refined
estimate may be formed using the recent robust Capon pitch
(RCP) estimator [14]. Reminiscent to RELAX-algorithm
presented in [18], we therefore proceed to form an estimate
of the qth pitch as

yq = y −
K̂∑

k=1,k 6=q

Zkâk (15)

where âk̂ represents the least squares estimate of the com-
plex amplitudes of source k, with Zk denoting the corre-
sponding source. The resulting signal, yq , may then be
treated as a single source signal with its (possibly) L̂q per-
turbed harmonics. This allows for the use of the RCP al-
gorithm, which is based on a multi-dimensional covariance
fitting criterion that attempts to maximally explain the ob-
served signal power, while allowing for uncertainties in the
frequency vectors. Defining Ẑq ∈ CM×L̂q as the Fourier
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Fig. 3. Spectrogram of recorded guitar sound.

matrix of the form in (6), evaluated using the PEBS esti-
mates of the frequency components of source q, and Zq,∆
as its perturbed counterpart, and forming a set of M × 1
overlapping sub-vectors

y(n)
q =

[
yq(n) · · · yq(n+M − 1)

]T
(16)

for n = 1, . . . , N −M + 1, where yq(`) denotes the `th
element of yq , the covariance fitting formulation of RCP
may be expressed as the optimization problem

max
Zq,∆,P q,σ2

e,q

log
(

det(Zq,∆P qZ
∗
q,∆ + σ2

e,qIL)
)

subject to Zq,∆P qZ
∗
q,∆ + σ2

e,qIL � R̂y,q

‖(Zq,∆ − Ẑq)el‖ ≤ εl
P q = P q � IL � 0

(17)

where

P q = diag
(
|A1,q|2 . . . |AL̂q,q

|2
)

(18)

R̂y,q =
1

N −M + 1

N−M∑
n=0

y(n)
q y(n)

q (19)

and σ2
e,q denotes the noise variance corresponding to source

q, el is the lth column of an L × L identity matrix, IL, �
the Schur-Hadamard (element-wise) product, and A � B
implies that A−B is positive semi-definite. Thus, the first
constraint requires that the matrix R̂y,q −Zq,∆P qZ

∗
q,∆ −

σ2
e,qIL is positive semidefinite, while the second constraint

ensures that each column of the perturbed matrix,Zq,∆, lies
within a small hyper-sphere of radius εl around the assumed
frequency vectors in Ẑq . The third and final constraint re-
quires P q to be positive definite and diagonal. Using the
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Fig. 4. The RIME estimate of the guitar recording.

approach developed in [14], this maximization yields robust
estimates of all the frequency components of source q. In
the interest of brevity, we refer the reader to [14] for the full
details of the RCP estimator. Next, the above process is re-
peated for all the K̂ sources, leading to the first set of refined
pitch estimates. Once the frequency components of all the
sources have been estimated, one may choose to do further
iterations of the refinement process, using, in each iteration,
the previous iteration’s refined pitch estimates to form im-
proved nominal (assumed) frequency vectors in RCP. This
may be repeated until a desired convergence criterion is met.
Finally, a gradient search is performed for each of the sepa-
rated sub problems from step three to further refine the pitch
estimates. These are formed by evaluating the error norm

‖e‖22 = ‖y −Za‖22 = (y −Za)∗(y −Za) (20)

for a set of frequencies, ω̄0,k, in the vicinity of the estimated
pitches, ω̂0,k. The element in this set that minimize (20) is
chosen as the refined estimate of ω0,k. The narrow ranged
set, ω̄0,k, is selected as

ω̄0,k = ω̂0,k + dkθ (21)

where θ is a 1-dimensional closely spaced grid and dk the
direction of the negative gradient of (20) with respect to
ω̂0,k, i.e.,

dk = −∇ω̂0,k
‖e‖2 (22)

= −∇ω̂0,k
‖y −Za‖2 (23)

which may be expressed as (24), given at the top of the
next page, where ∇ω̂0,k

is the gradient operator with re-
spect to ω̂0,k. We term the resulting estimator the Robust
Inharmonicity-based Multi-pitch Estimator (RIME).
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dk = a1Y y � z(ω̂0,k)− a1Y y � z(−ω̂0,k)− a∗1
L∑
l=2

alY z(ω̂l,k − ω̂0,k) + a1

L∑
l=2

a∗l Y z(ω̂0,k − ω̂l,k) (24)

4. NUMERICAL RESULTS

In this section, we examine the performance of the proposed
RIME estimator, using N = 500 samples of a simulated si-
nusoidal audio signal, consisting of K = 2 sources, each
with Lk ∈ U(3, 10) harmonics, suffering from an inhar-
monicity following (2), with Bk ∈ U(0, 0.0005). Figures 1
and 2 show the root mean squared error (RMSE), defined as
(RMSE)2 = 1

J

∑J
`=1

∑K
k=1(ω`0,k− ω̂`0,k), where ω`0,k and

ω̂`0,k denote the kth true and estimated pitch, for simulation
`, respectively, using J = 250 Monte-Carlo simulations,
as a function of the signal to noise ratio (SNR), defined as
σ2
yσ
−2
e , where σ2

y denotes the power of the noise free part
of x(n), as well as a function of the inharmonicity coeffi-
cient Bk (which in this case is the same for both sources).
The RIME estimates of the two most dominant sources are
compared to the PEBS estimate, the optimal filtering (Opt-
Filt), and orthogonality-based (Orth) estimates [1, 2], with
the three latter being allowed perfect knowledge of both K
and their respective Lk. Finally, we examine the perfor-
mance of the proposed algorithm for a measured guitar sig-
nal consisting of a varying number of sound sources, which
in this case corresponds to the number of used strings. Fig-
ures 3 and 4 show the spectrogram of the signal as well as
the resulting RIME estimates, which can be seen to well
follow the true pitch signals.
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