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ABSTRACT

A recent rise of compressive sensing (CS) algorithms has
prompted many questions about the analysis of such sensed
signals. Specifically, calculating a time-frequency representa-
tion (TFR) of these signals is an open question. In this paper,
we propose an approach for calculating TFRs of compressed
sensed signals based on recently proposed CS algorithm using
modulated discrete prolate spheroidal sequences (MDPSS).
The results of our numerical analysis show that a visually
reliable TFR of compressed sensed signals can be obtained
using the proposed approach. Furthermore, these compressed
sensed signals can also be used for accurate estimation of
signal parameters such as the instantaneous frequency.

Index Terms— Sparse signals, compressive sensing,
time-frequency analysis.

1. INTRODUCTION

A widespread use of monitoring devices in recent years has
prompted severe constraints on data acquisition and process-
ing systems. To alleviate this problem, CS was proposed as a
potential approach [1]. CS enables one to acquire the data at
sub-Nyquist rates, and recover it accurately from such sparse
samples [1], [2], [3]. However, an immediate question is how
can we process such data. Specifically, how can we obtain a
TFR of a signal? One way would be to recover a signal from
its samples and calculate TFR based on the reconstructed sig-
nal, but this would defeat the purpose of CS. In their seminal
work which married the idea of TFRs and compressive sens-
ing [4], Flandrin and Borgnat proposed to acquire compressed
samples in the ambiguity domain which requires calculating
the ambiguity function of the signal. To avoid these addi-
tional computational steps, one should consider calculating
TFRs based on the actual compressed samples.

In this paper, we propose to calculate TFR of a signal
based on compressed samples obtained through a recently
proposed CS approach [5]. The CS approach is based on a
dictionary of MDPSS [6], since these bases are more suitable
for CS than discrete prolate sequences (DPSS) [5]. MDPSS
are obtained by modulation and variation of the bandwidth of

DPSS to reflect the varying time-frequency nature of many
real-life signals (e.g., dual-axis swallowing accelerometry
signals considered in [5]). The results of the numerical anal-
ysis show that the proposed algorithm can be used to obtain a
reliable TFR of compressed sensed signals.

2. PROPOSED SCHEME

CS, as a transform coding method, converts input signals
from a high-dimensional space into signals that lie in a space
of significantly smaller dimensions (e.g., wavelet transforms)
[1], [7]. These CS approaches are well suited for signals
that can be represented with significant K coefficients and
N-dimensional basis. This is accomplished by computing
a measurement vector y that consists of M << N linear
projections of the vector x:

y = Φx (1)

where Φ represents an M ×N matrix and is often refer to as
the sensing matrix [1].

Given the CS framework, the immediate question is how
to define the sensing matrix Φ. In [5], [8], MDPSS were pro-
posed as suitable bases for CS. In particular, given N such
that n = 0, 1, ..., N − 1, MDPSS are defined as

Ψk(N,W,ωm;n) = exp(jωmn)vk(N,W ;n) (2)

where ωm = 2πfm is a modulating frequency, W is the nor-
malized half-bandwidth (0 < W < 0.5) and vk(n,N,W ), is
defined as the real solution to the system of equations [9]:

N−1∑
m=0

sin[2πW (n−m)]

π(n−m)
vk(m,N,W )

= λk(N,W )vk(n,N,W ) (3)

with k = 0, 1, ..., N − 1 and λk(N,W ) being the ordered
non-zero eigenvalues of (3):

λ0(N,W ) > λ1(N,W ), ..., λN−1(N,W ) > 0. (4)

MDPSS are doubly orthogonal and are bandlimited to the
frequency band [−W + ωm : W + ωm] [6]. To choose the
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modulating frequency, it is assumed that the spectrum S(ω)
of the signal is confined to a known band [ω1;ω2] [6], [5].
Then the modulating frequency is given by

ωm = (ω1 + ω2)/2 (5)

and the bandwidth of the DPSSs is given by

W = |(ω2 − ω1)/2| (6)

as long as both satisfy:

|ωm|+W < 0.5. (7)

The next step is to formalize how to recover the samples
using the sensing matrix. In other words, we seek a solution
to the problem

min ||x||0 subject to ‖y − Φx‖2 < η (8)

where η is the expected noise of measurements and ‖•‖2 is the
Euclidian norm. Unfortunately, this minimization is NP-hard
and not suitable for many applications. To avoid the com-
putational burden, matching pursuit (MP) (e.g., [10]) can be
used to avoid some of the computational burden associated
with the CS. MP is a greedy, sparse function approximation
scheme with the squared error loss, which iteratively adds
new functions (i.e. basis functions) to the linear expansion.
In other words, it decomposes a signal into a linear expansion
of waveforms that are selected from a redundant dictionary of
functions [10]. If the dictionary is orthogonal, MP achieves
perfect reconstruction. Otherwise, if it is desired to achieve
compact representation of the signal with MP, the members
of the dictionary should mimic the signal structure and behav-
ior. MP is computationally more efficient than a basis pursuit,
since the basis pursuit minimizes a global cost function over
all members of the dictionary [10].

To obtain TFR of a compressed sensed signal, the pro-
posed algorithm starts with initial approximation for the sig-
nal, x̂, and the residual, R:

x̂(0)(m) = 0 (9)

R(0)(m) = x(m) (10)

where m represent the M uniformly or non-uniformly dis-
tributed time indices (i.e., the compressed samples). Then,
MP calculates the sparse approximation of a signal by reduc-
ing the norm of the residue,R = x̂−x. In other words, at step
k, MP identifies the member of the dictionary that best ap-
proximates the residual. Secondly, MP adds a scalar multiple
of the member of the dictionary to the current approximation:

x̂(k)(m) = x̂(k−1)(m) + αkφk(m) (11)

R(k)(m) = x(m)− x̂(k)(m) (12)

where αk = 〈R(k−1)(m), φk(m)〉/ ‖φk(m)‖2. The process
continues until we reach a stoping criterion. The stoping crite-
rion can be based on the idea that the normalized mean square

error should be below a certain threshold value or it can be
based on the number of bases used for approximation should
be below a certain number.

Using the signal approximation with L bases obtained by
MP, we can obtain a TFR of the signal as follows:

T F{x(n)} =

L∑
l=1

〈x(m), φl(m)〉T F{φl(n)} (13)

where φl are L bases from the dictionary with the strongest
contributions, and T F{} is a time-frequency operator (e.g.,
short-time Fourier transform) [11], [12].

3. RESULTS AND DISCUSSION

To calculate TFRs of sample signals, we use spectrogram
with the Gaussian window with σ = 0.02. For compres-
sive sensing, we used a 25-band MDPSS-based dictionary
with the normalized half-bandwidth equal to W = 0.495 and
N = 256. The stopping criterion used in all four examples
was that the normalized mean square error has to be less than
10−20.

Let’s begin the analysis of the proposed algorithm by ex-
amining the spectrogram of the following signal:

x1(t) = [e−60(t−0.25)2 + e−60(t−0.75)2 ] cos(110πt)

+e−60(t−0.5)2 [cos(180πt) + cos(40πt)] (14)

where 0 < t < 1 and the assumed sampling rate is Ts =
1/256 seconds. The signal consists of four short transients in
different frequency and time bands. Figure 1 (a) depicts the
spectrogram of the original signal, while Figures 1 (b)-(c) de-
pict the signal acquired compressively with only 60% of sam-
ples used. These samples were acquired either using uniform
sampled times or nonuniform sampled times. Nonuniform
sampled times were obtained using a standard uniform dis-
tribution on the open interval (0, 1). When comparing these
TFRs to the TFR of the original signal shown in Figure 1(a)
(i.e., the signal sampled using traditional schemes), no differ-
ences can be observed. Next, we calculated the mean square
error denoting the normalized difference between the TFR
based on compressive samples and the TFR based on the orig-
inal signal. The presented results were obtained using 1000
realizations. Clearly, as we increased the number of sam-
ples, the error became smaller regardless whether uniform or
nonuniform sampling was used.

The second investigation is carried for frequency-modulated
(FM) signals. In particular, we consider a sinusoidally-
modulated signal defined as:

x2(t) = sin(110πt+ 2π cos(6πt)) (15)

where 0 < t < 1 and the assumed sampling rate is Ts =
1/256 seconds. In this case, 80 % of samples are used for
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Fig. 1. Spectrograms of: (a) the original signal; (b) the signal
based on uniform samples; (c) the signal based on nonuniform
samples. Mean square error obtained when using various per-
centage of samples is shown in (d), with the solid line indicat-
ing the error obtained with uniform samples, and the dashed
line indicating the error obtained with nonuniform samples.

compressive sensing, and the results of the analysis are shown
in Figures 2(a)-(c). As in the previous case, there were no dif-
ferences in TFRs of traditionally-sampled and compressively-
sampled versions of the signal. However, here we had to use a
greater number of samples in comparison to the first example,
due to a wideband nature of the signal. This issue can be alle-
viated by using modulation techniques that are more suitable
for these wideband signals.

The results in Figure 2(d) depict the behavior of the in-
stantaneous frequency (IF) estimator based on the traditional
TFR and TFRs obtained from compressed samples. The sig-
nal was contaminated with an additive white Gaussian noise,
and its variance was proportional to the considered signal-
to-noise ratios (SNR). The results shown in Figure 2(d) were
obtained using 1000 realizations. As expected, the tradi-
tional TFR obtained the lowest values of mean square errors
(MSE), but TFRs based on compressive samples closely fol-
low the trend of the traditional TFR, especially the TFR based
on uniformly compressed samples. These results clearly
demonstrate that even based on compressive samples, we can
achieve a reliable estimate of IF. Further studies are needed
to understand the effects of the number of acquired samples
on MSE.

To obtain further compression, the bandwidth of MDPSS
sequences and partitioning approaches need to be optimized.
Here, we consider two ideal cases. First, we consider a signal
consisting of a single basis function from the current dictio-
nary. The signal is depicted in Figure 3(a). The reconstructed
spectrograms using uniform sample spacing and non-uniform

Fig. 2. Spectrograms of: (a) the original signal; (b) the sig-
nal based on equal distance samples; (c) the signal based on
irregular samples. The performance of the IF estimator is
shown in (d) based on the original signal (solid line), equal-
distance compressed samples (dashed line) and nonuniform
compressed samples (dash-dotted line).

sample spacing are shown in Figures 3(c) and (d), respec-
tively. In both cases, only 5 samples were need to exactly
recover the signal, which represents less than 2% of the total
number of samples.

Fig. 3. The time domain representation of the consider sig-
nal is shown in (a). Spectrograms of: (b) the original signal;
(c) the signal based on equal distance samples; (d) the signal
based on irregular samples.

Similar results are obtained when considering a signal
consisting of three basis functions from the dictionary as
shown in Figure 4(a). For both uniform and non-uniform
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sampling, only 46 samples were needed to recover the signal
exactly. This represents less than 18% of the total number of
samples. The obtained spectrograms were recovered exactly
as shown Figures 4(c) and (d). In comparison to the signal
shown in Figure 3(a), the current signal has more complex
time-frequency patterns involved. Hence, a greater number
of samples is needed, even though each signal component is
a member of the dictionary.

Fig. 4. The time domain representation of the consider sig-
nal is shown in (a). Spectrograms of: (b) the original signal;
(c) the signal based on equal distance samples; (d) the signal
based on irregular samples.

These two ideal cases show that higher accuracies can be
obtained for x1(t) and x2(t), as long as the dictionaries used
for compressive sampling are well suited for the considered
signals. This is well known shortcoming of any dictionary-
based approaches, and various schemes can be devised to
achieve well-suited partitioning of the time-frequency plane.
However, such investigations are beyond the scope of the cur-
rent manuscript.

4. CONCLUSION
A novel approach for obtaining TFRs of compressively sam-
pled signals was proposed in this paper. In particular, we pro-
posed a scheme that used MDPSS. We compared TFRs ob-
tained from traditionally sampled signals and compressively
sampled signal. There were no visible differences between
these representations. Furthermore, we demonstrated that an
IF estimator based on the TFRs from the compressive samples
produces reliable results.
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