
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

DETECTION OF CLIPPING IN CODED SPEECH SIGNALS

James Eaton and Patrick A. Naylor

Department of Electrical and Electronic Engineering, Imperial College, London, UK
{j.eaton11, p.naylor}@imperial.ac.uk

ABSTRACT
In order to exploit the full dynamic range of communications
and recording equipment, and to minimise the effects of noise
and interference, input gain to a recording device is typically
set as high as possible. This often leads to the signal exceeding
the input limit of the equipment resulting in clipping. Com-
munications devices typically rely on codecs such as GSM
06.10 to compress voice signals into lower bitrates. Although
detecting clipping in a hard-clipped speech signal is straight-
forward due to the characteristic flattening of the peaks of the
waveform, this is not the case for speech that has subsequently
passed through a codec. We describe a novel clipping detec-
tion algorithm based on amplitude histogram analysis and least
squares residuals which can estimate the clipped samples and
the original signal level in speech even after the clipped speech
has been perceptually coded.
Index Terms: speech enhancement, clipping detection, signal
recovery

1. INTRODUCTION

Clipping is caused when the input signal to a recording device
has exceeded the available dynamic range of the device. It
is generally undesirable and significantly affects the subjec-
tive quality of speech [1]. Detection of clipping is therefore
important in maintaining speech quality, and is employed in
restoration, denoising and de-clicking applications. Detection
of clipping is straightforward in raw clipped speech due to the
characteristic flattening of the peaks of the waveform at the
limits of the input dynamic range. We define the clipping level
to be the fraction of the unclipped peak absolute signal ampli-
tude to which a sample exceeding this value will be limited.
For example in a signal clipped with a clipping level of 0.5,
any input signal exceeding 50% of peak absolute amplitude
will be limited to 50 % of peak absolute amplitude, and a
clipping level of 1.0 will therefore leave the signal unchanged.
We define Overdrive Factor (ODF) as the reciprocal of clip-
ping level. An established method [2] for detecting clipped
samples in a clipped signal considers a signal x(n) of length
N containing clipped samples. The set of indices c at which
x(n) has clipped samples is defined as:

c = {i : 0  i < N and (x(i) > µ

+or x(i) < µ

�)} (1)

where

µ+ = (1� ✏) max{x(n)} and µ� = (1� ✏) min{x(n)}

for some tolerance ✏ such as 0.01. Another clipping detection
method described in [3] exploits the properties of the amplitude
histogram of the signal to identify which samples are clipped.
These methods work well when applied directly to the clipped
signal.

1.1. Effect of a perceptual codec

In this work we define a perceptual codec to mean a lossy
codec optimised for speech perception. Perceptual codecs
such as GSM 06.10 which remove information not typically
perceived by the listener do not in general preserve signal
phase [4]. This affects the flattened peaks of a clipped signal
resulting in an amplitude histogram resembling that of an
unclipped signal. This greatly reduces the accuracy of clipping
detection for coded speech.

Fig. 1 shows the time domain waveforms and their ampli-
tude histograms for TIMIT [5] utterance SX12.WAV directly
and through different codecs. Plots (a) and (b) are for the un-
processed utterance, whilst plots (c) to (h) show the utterance
after passing through Pulse-Code Modulation (PCM) of Voice
Frequencies (G.711), GSM 06.10, Moving Picture Experts
Group (MPEG)-2 Audio Layer III (MP3), and Adaptive Multi-
Rate (AMR) at 4.75 kbps respectively. Fig. 2 shows the same
utterances clipped with a clipping level of 0.5 prior to passing
through each codec. In Figs. 2 (a) to (d), the characteristic
flattening of the waveform peaks and corresponding spikes in
the amplitude histogram are clearly visible when compared
with Figs. 1 (a) to (d). However, with a perceptual codec, the
waveform and amplitude histograms for the clipped utterance
are similar to the unclipped utterance (Fig. 2 (e) to (j) and
Fig. 1 (e) to (j)).

Established clipping detectors and restoration algorithms
such as those presented in [6, 7] rely on these time domain
features and may fail when presented with a post-codec speech
signal. In [8] a spectral transformation of each frequency band
using a model spectral envelope is proposed. This method may
work on post-codec speech if trained on post-codec speech
and used with a codec detector, but is outside of the scope of
this paper.
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Fig. 1. Waveforms and amplitude histograms for the unclipped
signals.

The key contributions of this paper are to: (1) propose
a non-intrusive clipping detector for speech that may have
passed through a codec employing the Least Squares Residuals
Iterated Logarithm Amplitude Histogram (LILAH) method;
(2) show how this is robust to perceptual codecs; and to show
a comparison of the results of the proposed methods with a
clipping detector from the literature [2].

2. PROPOSED METHOD

We now introduce the novel Iterated Logarithm Amplitude
Histogram (ILAH) method to detect clipping and unclipped
signal level, and the Least Squares Residuals (LSR) method
by frame in the frequency domain to reduce estimation errors.
We further present LILAH which uses the ILAH method to
reduce the computational complexity of LSR.

2.1. ILAH clipping detection method

The amplitude histogram of speech has been described using a
gamma distribution with a shaping parameter between 0.4 and
0.5 [9]. After clipping and passing through a perceptual codec
such as GSM 06.10 the time domain features of clipping are
obscured as discussed in Sec. 1.1. The Strong law of large
numbers suggests that taking the logarithm of the logarithm

0 0.5 1 1.5 2
x 104

−1

0

1
(a)  50% clipped,

Sample index

N
or

m
. a

m
pl

itu
de

−1 −0.5 0 0.5 1
0

0.5

1
(b)  50% clipped,

Norm. amplitude

N
or

m
. F

re
qu

en
cy

0 0.5 1 1.5 2
x 104

−1

0

1
(c)  50% clipped, Codec:G711

Sample index

N
or

m
. a

m
pl

itu
de

−1 −0.5 0 0.5 1
0

0.5

1
(d)  50% clipped, Codec:G711

Norm. amplitude

N
or

m
. F

re
qu

en
cy

0 0.5 1 1.5 2
x 104

−1

0

1
(e)  50% clipped, Codec:GSM

Sample index

N
or

m
. a

m
pl

itu
de

−1 −0.5 0 0.5 1
0

0.5

1
(f)  50% clipped, Codec:GSM

Norm. amplitude

N
or

m
. F

re
qu

en
cy

0 0.5 1 1.5 2
x 104

−1

0

1
(g)  50% clipped, Codec:MP3

Sample index

N
or

m
. a

m
pl

itu
de

−1 −0.5 0 0.5 1
0

0.5

1
(h)  50% clipped, Codec:MP3

Norm. amplitude

N
or

m
. F

re
qu

en
cy

0 0.5 1 1.5 2
x 104

−1

0

1
(i)  50% clipped, Codec:AMR

Sample index

N
or

m
. a

m
pl

itu
de

−1 −0.5 0 0.5 1
0

0.5

1
(j)  50% clipped, Codec:AMR

Norm. amplitude

N
or

m
. F

re
qu

en
cy

Fig. 2. Waveforms and amplitude histograms for the clipped
signals

(the Iterated Logarithm (IL)) of a function that approaches
infinity can be approximated with a first order function. The
ILAH method takes the IL of a 25 point amplitude histogram
ensuring that values of zero and below are removed follow-
ing each iteration as illustrated in Fig. 3 (a), (c), (e), (g) and
(i), transforming the distribution recovering features that in-
dicate clipping. Where the clipped speech has subsequently
passed through a perceptual codec, the extremal values of the
ILAH show a characteristic spreading so that the edges of the
histogram are seen to slope outwards as Fig. 3 (f), (h) and (j).

A generalised ILAH for a clipped post-codec speech signal
is shown in Fig. 4. An estimate for the peak negative unclipped
signal amplitude can be obtained by fitting line (a) to the
upper left side of the histogram (b) and extending this to the
point where it crosses the x-axis (d) to give the estimate, and
similarly with the upper right side (c). In order to prevent
over-estimation of the unclipped signal level, in the case where
the gradient estimate is very shallow, the gradient is limited to
a suitable value such as 0.005.

In the post-codec case, the sloping sides (e) and (f) rep-
resent the spread of signal levels caused by the perceptual
codec. Thus where the sides slope outwards, the amplitude
values at the point at which each side meets each uppermost
side (b) and (c) at (h) for example can be considered to be an
improved estimate for the clipping level. An estimate of the
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Fig. 3. ILAHs of TIMIT file SI1027.WAV for each codec with
no clipping (left hand plots) and with clipping at 30% (right
hand plots)

amount of clipping in both an unprocessed and a post-codec
signal can be made by estimating the gradients of sides (e)
and (f) by applying a threshold to the two gradients below
which the second estimate does not apply, and comparing the
estimate of the peak unclipped signal level and the maximum
clipped signal amplitude. The clipping amount and Eq. (1) can
then be used to estimate which samples in x(n) are clipped.
We refer to this method as the Iterated Logarithm Amplitude
Histogram (ILAH) method.

2.2. LSR clipping detection method

When speech is clipped, new frequencies are introduced in
the form of additional harmonics and intermodulation prod-
ucts [10]. Whilst passing speech through a perceptual codec
limits the frequency response and itself introduces distortion,
some of the spectral characteristics of clipped speech are re-
tained [11]. Therefore by estimating spectral roughness we
can additionally detect clipping using frequency domain pro-
cessing. To achieve this, we compute a periodogram of the
signal using an Fast Fourier Transform (FFT) of length 32, a
Hamming window of length 4 and overlap of 75%, and then
fit a line across the frequency bins for each frame in a Least
Squares (LS) sense. Next we store the residuals by sample and
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Fig. 4. Generalised ILAH for a speech signal

then normalise over the entire signal. High residuals indicate
spectral roughness and thus clipping, and by setting a thresh-
old above which we assume a sample to be clipped, we can
create a vector indicating the presence of clipped samples. The
optimum threshold is determined by finding the intersection of
the False Positive Rate (FPR) and False Negative Rate (FNR)
curves for the algorithm [12], where FPR is the ratio of sam-
ples incorrectly identified as clipped to the total number of
unclipped samples and FNR is the ratio of samples incorrectly
identified as unclipped to the total number of clipped samples.
This optimum threshold was found to be 0.3963. Whilst accu-
racy is better than with ILAH, the cost of computing a LS fit
for every sample is high, and no estimate for the clipping level
or unclipped signal level is obtained.

2.3. Combining LSR and ILAH methods

We propose to combine LSR and ILAH to produce an accu-
rate clipping detector that also provides an estimate of the
clipping level and peak unclipped signal level. Here we only
compute the LSR where there is an indication of clipping from
ILAH reducing computational complexity. This is achieved by
taking the results of the ILAH clipping test, and establishing
clipping zones in the time domain where LSR will operate
using a 20ms rolling window: if clipped samples are less than
20ms apart they comprise a zone. LSRs are only computed
within zones, and samples outside of the zones are assumed
to be unclipped. The computational complexity is therefore
dependent on the estimated clipping level. We refer to this
method of clipping detection as the LILAH.

3. TEST METHODOLOGY

The approach to testing was to compare all methods at 10
clipping levels and with the four codecs in Fig. 1 using a large
number of speech files, and to use the Receiver Operating
Characteristic (ROC) [12] to analyse the results. A set of 24
male and 24 female speech signals were randomly selected
from the utterances of the TIMIT [5] test dataset and clipped
at ten clipping levels, 0.1 to 1.0 in steps of 0.1. A ground
truth binary vector c of clipped samples was established for
each utterance using (1). The clipped speech was then passed
either directly or via one of four codecs: G.711, GSM 06.10,

3
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AMR narrowband coding at 4.75 kbps, and MP3 at 128 kbps
with output sample rate 8 kHz before being passed to each
algorithm. We employed as a baseline the method described
in (1) with ✏ = 0.01 and conducted the test on the proposed
ILAH, LSR and LILAH methods. We also tested the baseline
(✏ = 0.22) because this was found through Equal Error Rate
(EER) analysis to work well with GSM 06.10. We refer to
this as the optimized baseline. Signals were time aligned to
compensate for any time shifts introduced by the codecs.

We used the measures Accuracy (ACC) and F1 Score from
ROC [12] to compare detection performance of each algorithm.
ACC is a measure of how accurately the algorithms identify
clipped and unclipped samples as a percentage of the total
number of samples. F1 Score is a measure of the correlation
between the vector c for each algorithm and the ground truth
and is a guide to overall performance. The measures are
computed as follows:

ACC = (TP + TN)/(P +N) (2)
F1 Score = 2TP/(2TP + FP + FN) (3)

where: TP is the number of True Positives, (samples correctly
identified as clipped); TN is the number of True Negatives
(samples correctly identified as unclipped); FP is the number
of False Positives (samples incorrectly identified as clipped);
FN is the number of False Negatives (samples incorrectly
identified as unclipped); P is the total number of samples
identified as clipped, both correctly and incorrectly, and N

is the total number of samples identified as unclipped, both
correctly and incorrectly.

Computational complexity was compared using estimated
Real-Time Factor (RTF) for each algorithm. Mean elapsed
processing time using the Matlab tic and toc functions for
each call on a 2.3GHz Intel i5 Core processor with 4 GB
1.333GHz DDR3 SDRAM was divided by the mean speech
file duration over all tests to give RTF. All implementations
were in Matlab.

4. RESULTS AND DISCUSSION

ACC and F1 Scores averaged over 48 TIMIT files for each
codec and clipping level are shown in Fig. 5 for the methods:
baseline, the optimized baseline, the proposed ILAH, LSR,
and LILAH. The ACC of the baseline where no codec is used
exceeds the proposed methods at clipping levels of 0.3 and
below as shown in Fig. 5 (a) and (c). With a perceptual codec
however, the ACC of the proposed algorithms exceeds the
performance of both the baseline and the optimized baseline.
ILAH performs better at lower clipping levels (higher ODF)
because it adapts to each speaker and utterance, whilst a fixed
threshold does not. All algorithms generate few FPs with the
exception of the optimized baseline with no codec and G.711
because with a codec at least some of the positives are correct,
but with no codec most of the positives are incorrect. For the
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Fig. 5. ACC and F1 by codec by algorithm and by clipping
level

proposed algorithms, more FPs are identified but more TPs
are identified in the presence of a codec also giving a greater
ACC score under these conditions.

The F1 Score of the proposed methods where no codec
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Table 1. Mean Real-Time Factor by algorithm.

Baseline(✏ = 0.01) ILAH LSR LILAH
0.00168 0.0075 17.7 3.65

is used is similar to the baseline at low clipping levels (high
ODFs), but when a perceptual codec is used the F1 Score far
exceeds the baseline as shown in Fig. 5, because the proposed
methods correctly identify many more clipped samples. The
optimized baseline performs moderately well in a codec at
high clipping levels (low ODF) where the codec, speaker and
utterance have little impact, but it fails at low clipping levels
since ✏ needs to vary with each speaker and utterance to get
good results whereas ILAH has an adaptive threshold, and
LSR uses frequency domain features independent of threshold.
The improved F1 Score of LSR over ILAH, and that com-
bining the two methods into LILAH overall improves the F1
Score is shown in Fig. 5 (f), (h) and (j).

These results show that the LILAH algorithm shows some
robustness to the codec used providing a non-intrusive estimate
of the clipped samples in speech with comparable performance
to the baseline in uncoded signals, and better than the opti-
mized baseline for perceptually coded signals without prior
knowledge of whether a codec has been used.

Using ILAH as a pre-processor for the LSR method results
in substantially reduced RTF over the test range of clipping
levels as shown in Table 1. Only the baseline RTF is shown
since ✏ does not significantly affect RTF.

A useful feature of the ILAH method is that the peak abso-
lute unclipped signal level is estimated as discussed in Sec. 2.1
which may find application in restoration algorithms. Estima-
tion results for unprocessed and GSM 06.10 coded clipped
signals are shown in Fig. 6.

5. CONCLUSIONS

We have proposed a novel method LILAH for detecting clip-
ping in speech that shows robustness to the speaker, clipping
level, and codec applied, and provides an estimate of the orig-
inal signal level. Our results show that it outperforms the
baseline case at detecting the clipped samples regardless of

prior knowledge of the encoding used in the original signal.
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