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ABSTRACT

This paper addresses set theoretic estimation used for online

learning in an adaptive filtering context. The advantages of

set theoretic estimation over the traditional point estimation

are shown, among which we highlight the capability of reduc-

ing the computational burden leading to energy saving. The

set-membership affine projection (SM-AP) algorithm is the

main framework because it generalizes many of the set the-

oretic algorithms, besides having a popular point estimation

counterpart for benchmarking, viz. the affine projection (AP)

algorithm. In addition, we discuss the effects of the design of

the involved sets in convergence speed and steady-state MSE.

Each iteration of the SM-AP algorithm exploits the intersec-

tion of constraint sets and, although any point in this set is

acceptable, some of its parts should be avoided during the up-

date. Moreover, we propose a new configuration for the error

constraints, which leads to low steady-state MSE, high con-

vergence speed, and low probability of update.

Index Terms— set theoretic estimation, set-membership

1. INTRODUCTION

For a long time, machine learning mechanisms have been

based on the classical theory of point estimation. Neverthe-

less, the importance of set estimation theory is growing as

the advantages of such a paradigm become clearer. Set the-

oretic optimization is the proper approach to tackle problems

in which uncertainty is unavoidable, since instead of search-

ing for a unique point within the feasible region that mini-

mizes or maximizes some objective function, it searches for

a set of points which are acceptable solutions given the in-

herent uncertainty of the problem [1]. This major feature of

set theoretic optimization provides two main advantages over

the classical approach: (i) robustness against noise provided

some information about the nature of the problem is used, and

(ii) energy saving, since the innovation in the observed data is

checked before the data are used in the learning process.

This paper addresses set theoretic estimation used for on-

line learning in adaptive filtering context. The set-membership

filtering (SMF) concept is presented and the set-membership

affine projection (SM-AP) algorithm is described. The SM-

AP algorithm was chosen as the main family of algorithms

This work was partially supported by CNPq, CAPES, and FAPERJ.

because it generalizes many of the set theoretic adaptive fil-

tering algorithms and due to the importance and existence of

its point estimation counterpart, viz. affine projection (AP) al-

gorithm. Indeed, the AP algorithm encompasses widely used

algorithms of the least mean square (LMS) family such as the

normalized LMS (NLMS) and binormalized LMS (BNLMS)

and, therefore, is used for benchmarking.

The SM-AP algorithm can be seen as an iterative proce-

dure, based on the intersection of constraint sets, to estimate

the feasibility set, the set of acceptable solutions. The general

form of the SM-AP algorithm, see [2, 3], requires a judicious

choice of the a posteriori error constraints in order to control

noise enhancement effects.

In this paper we consider some theoretic aspects of the

learning stage of the SM-AP algorithm in order to introduce a

general rule for setting the a posteriori error constraints. We

also propose a smart way to preset them. This way it is possi-

ble to show how the constraint sets can be properly exploited

so that the SM-AP algorithm yields high convergence speed

and low steady-state mean square error (MSE).

This paper is organized as follows. Section 2 describes the

set theoretic foundation employed in the SMF theory. Sec-

tion 3 covers the SM-AP algorithm. In Section 4, we dis-

cuss the importance of an adequate choice for the parame-

ter called constraint vector (CV). Indeed, we explain why a

general choice of the CV usually leads to poor results (high

MSE) in practical applications and we state a rule for properly

choosing the CV. In Section 5, we compare the AP versus the

SM-AP algorithm employing different CVs, including the one

proposed in this paper, in terms of steady-state MSE level in

stationary and nonstationary environments and convergence

speed. The conclusions are drawn in Section 6.

2. SET-MEMBERSHIP FILTERING (SMF)

SMF is a set theoretic estimation paradigm suitable to adap-

tive filtering problems that are linear-in-parameters [4]. In the

SMF theory, we are interested in a set of feasible/acceptable

solutions, called feasibility set, rather than a single solution.

The main advantage of the SMF over the standard point es-

timation theory is that the former can efficiently model the

uncertainty inherited from the observed data leading to better

estimates, in terms of MSE, as well as energy saving. This

section briefly covers the SMF theory.

Let e, d, y ∈ R be the error, desired, and output signals of
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Θ
ψ(1)

d(0) − w
T
x(0) = −γ̄

d(0) − w
T
x(0) = γ̄

d(1) − w
T
x(1) = −γ̄

d(1) − w
T
x(1) = γ̄

H(1)

H(0)

Fig. 1. Example of SMF concept: ψ(1) = H(0)
⋂

H(1).

the adaptive filter, respectively. The output signal is defined

as y , wTx, where w,x ∈ R
N+1 are the adaptive filter

coefficient vector and input vector, respectively, and N is the

filter order. The error signal is defined as e , d− y.

The SMF criterion is to estimate w that leads to an error

signal whose magnitude is upper bounded by a constant γ ∈
R+ for all possible pairs (x, d). That is, denoting by S the set

comprised of all possible pairs (x, d), the SMF criterion aims

at finding w satisfying |e| = |d − wTx| ≤ γ, ∀(x, d) ∈ S.
Hence, there exists a set Θ of solutions, called feasibility set,

which is defined asΘ ,
⋂

(x,d)∈S

{

w ∈ R
N+1 : |d−wTx| ≤ γ

}

,

and any w ∈ Θ is an acceptable solution.

For online learning, an iterative procedure must be used

to estimate Θ. At a given iteration k, we can use all previ-

ous data to estimate Θ via the exact membership set ψ(k) ,
k
⋂

i=0

H(i), whereH(i),
{

w ∈ R
N+1 : |d(i)−wTx(i)| ≤ γ

}

is the constraint set, the set comprised of all w satisfying the

error bound at iteration i. A geometrical interpretation of the

involved sets is depicted in Fig. 1. For more details see [3,5].

3. SET-MEMBERSHIP AFFINE PROJECTION

The set-membership affine projection (SM-AP) algorithm [2]

is an iterative procedure, based on the SMF theory, whose up-

dating rule exploits the intersection of constraint sets related

to the last iterations. The use of more sets in the updating

process leads to higher convergence speed. This section de-

scribes the SM-AP algorithm.

Assume we have available the lastL+1 data-pairs of input
vectors and desired signals, where L is a nonnegative integer

called data reuse factor. The variables e(k),d(k),y(k) ∈
R

L+1 represent the error vector, desired vector, and output

vector corresponding to the adaptive filter. The output vector

is defined as y(k) , XT (k)w(k), whereX(k) ∈ R
(N+1)×(L+1)

is the input matrix, and the error vector is given by e(k) ,

d(k) − y(k) = d(k) − XT (k)w(k). The a posteriori error

vector is denoted as ε(k) , d(k)−XT (k)w(k+1) ∈ R
L+1

and γ(k) ∈ R
L+1 denotes the constraint vector (CV) of the

SM-AP algorithm [2, 3, 5]. The inner structure of the follow-

ing variables are helpful in further discussions:

X(k) = [x(k) x(k − 1) . . . x(k − L)]
x(k) = [x(k) x(k − 1) . . . x(k −N)]T

d(k) = [d(k) d(k − 1) . . . d(k − L)]T

γ(k) = [γ0(k) γ1(k) . . . γL(k)]
T

e(k) = [e0(k) e1(k) . . . eL(k)]
T

(1)

For a given coefficient vectorw(k), the SM-AP algorithm

aims at obtaining an estimate w(k + 1) ∈ ψk
k−L for all k,

where ψk
k−L ,

k
⋂

i=k−L

H(i) is the intersection of the last L+1

constraint sets. Hence, ifw(k) already belongs to ψk
k−L, then

no update is performed. Otherwise, w(k) is updated so that

w(k + 1) is some point in ψk
k−L. Indeed, when an update

occurs,w(k+1) is generated as the solution to the following
optimization problem (OP) [2]:

min ‖w(k + 1)−w(k)‖2, s.t. ε(k) = γ(k), (2)

where, in order to guaranteew(k + 1) ∈ ψk
k−L, the CV γ(k)

must satisfy |γi(k)| ≤ γ for i = 0, 1, . . . , L. The solution to

such OP is given by the following recursion [2, 3, 5]:

w(k+1)=

{

w(k)+X(k)Ŝ(k) [e(k)−γ(k)] if |e0(k)|>γ,

w(k) otherwise,
(3)

where Ŝ(k),
[

XT (k)X(k) + δI
]−1

∈ R
(L+1)×(L+1) and δ

is the regularization factor used to avoid numerical issues.

4. CHOOSING THE CONSTRAINT VECTOR
In the adaptive filtering literature, it is well known that when-

ever w(k) is updated so that the a posteriori error becomes

less than or equal to zero the noise enhancement is signifi-

cant [3]. Thus, although any w(k + 1) ∈ ψk
k−L is a valid so-

lution, i.e., it takes the uncertainty caused by noise into con-

sideration, some parts of ψk
k−L should not be used in order

to control noise enhancement effects. This explains why the

SM-AP algorithm using an arbitrary/random CV, i.e., any CV

satisfying |γi(k)| ≤ γ, usually yields high steady-state MSE.

Fig. 2 depicts an example of updating process of the SM-

AP algorithm with L = 1. In this case, ψk
k−1 = H(k −

1)
⋂

H(k), but only the shaded region within ψk
k−1 should

be used to keep the noise enhancement controlled. Geomet-

rically, it is easy to see that in order to generate w(k+1) in
the shaded region we must design the CV as a function of the

error components. In fact, we can use simply the sign of the

error components, denoted by sign [ei(k)], since with this in-

formation we can determine which hyperplanes are closer to

w(k). Definitions 1 to 3 present some choices for γ(k) that
yield w(k + 1) in the shaded region. These CVs clearly sat-

isfy |γi(k)| ≤ γ, but for the ED-CV we must impose γ ≤ 1
(when γ = 1 the ED-CV coincides with FMEB-CV).

Definition 1 (Simple choice (SC)) The SC constraint vector

(SC-CV), proposed in [2] and analyzed in [6], is defined as

γi(k) ,

{

γ sign [ei(k)] if i = 0,

ei(k) for i = 1, . . . , L.
(4)

Definition 2 (Fixed modulus error-based (FMEB)) The

FMEB constraint vector (FMEB-CV), proposed in [7] and

analyzed in [5], is defined as

γi(k) , γ sign [ei(k)] , for i = 0, 1, . . . , L. (5)
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Definition 3 (Exponential decay (ED))The ED constraint vec-

tor (ED-CV), proposed here, assumes γ ≤ 1 and is given by

γi(k) , γ i+1 sign [ei(k)] , for i = 0, 1, . . . , L. (6)

4.1. Update: Geometrical Viewpoint

As stated in Eq. (2), when an update occurs w(k) is mapped

to the closest point that yields a posteriori error vector equal

to the CV. Following this reasoning, we can analyze geomet-

rically the updating process related to each of the CVs.

In the SC-CV, w(k+1) is produced so that the error due

to data-pair (x(k), d(k)) is reduced in modulus to γ, whereas

the errors due to the past L data-pairs, i.e. (x(i), d(i)) for

i = k−L, . . . , k−1, are kept unaltered. Hence,w(k+1) lies
on the closest hyperplane of ψk

k−L. On the contrary, in the

FMEB-CV all the errors due to the last L + 1 data-pairs are

modified so that their absolute values become γ. As a result,

w(k+1) is on a vertex belonging to the closest hyperplane

of ψk
k−L. In the ED-CV case, w(k+1) is also on the closest

hyperplane of ψk
k−L. Fig. 2 shows an example illustrating the

updating process of the SM-AP algorithm for different CVs.

4.2. Update: Analytical Viewpoint

According to Eq. (3), when the SM-AP algorithm updates,

w(k + 1) is computed as

w(k + 1) = w(k) +A(k)[e(k)− γ(k)], (7)

where matrix A(k) , X(k)Ŝ(k) ∈ R
(N+1)×(L+1) is a func-

tion of the data. In this subsection, we show that the afore-

mentioned CVs can be interpreted as the weights applied to

each of the columns ai(k) ∈ R
N+1, i = 0, . . . , L, of the ma-

trixA(k). Indeed, for each CV, we can rewrite Eq. (7) as

w(k + 1) = w(k) + p(k) (8)

where p(k) , A(k)D(k)e(k) ∈ R
N+1 is the perturbation

applied tow(k) during the update andD(k) ∈ R
(L+1)×(L+1)

is a diagonal matrix containing these weights. The equation

above also states that the SM-AP algorithm with an adequate

CV is nothing more than an AP algorithm featuring data se-

lection (innovation check to decide if an update is necessary)

and a variable step-size matrixD(k) (whose diagonal entries
represent the step-size applied to each vector ai(k)).

The following equations describe matrixD(k) and vector
p(k) for the different CVs. For the SC-CV, we have a rank-1
matrix DSC(k) implying that only the first column a0(k) is
used in the update, see Eq. (9). On the other hand, matrices

DFMEB(k) and DED(k) have full rank and, therefore, yield

perturbation vectors as linear combinations of all columns of

A(k), see Eqs. (10) and (11). As a consequence, it is expected
the convergence speed of the FMEB-CV and ED-CV to be

higher than the one of the SC-CV.

DSC(k) = diag

{(

1−
γ

|e0(k)|
, 0, . . . , 0

)}

pSC(k) =

(

1−
γ

|e0(k)|

)

e0(k)a0(k) (9)

DFMEB(k) = diag

{(

1−
γ

|e0(k)|
, 1−

γ

|e1(k)|
, . . . , 1−

γ

|eL(k)|

)}

pFMEB(k) =

L
∑

i=0

(

1−
γ

|ei(k)|

)

ei(k)ai(k) (10)

DED(k) = diag

{(

1−
γ

|e0(k)|
, 1−

γ2

|e1(k)|
, . . . , 1−

γL+1

|eL(k)|

)}

pED(k) =

L
∑

i=0

(

1−
γ i+1

|ei(k)|

)

ei(k)ai(k) (11)

H(k − 1)

H(k)

d(k − 1)−w
T
x(k − 1) = −γ̄

d(k − 1)−w
T
x(k − 1) = γ̄

d(k)−w
T
x(k) = −γ̄

d(k)−w
T
x(k) = γ̄

d(k)−w
T
x(k) = 0

d(k − 1)−w
T
x(k − 1) = 0

w(k)

Fig. 2. SM-AP updating scheme in the parameter space for

L = 1. The blue, cyan, and green arrows depict w(k + 1)
considering the SC-CV, FMEB-CV, and ED-CV, respectively.

The shaded region represents the subregion of ψk
k−L where

noise enhancement is controlled/reduced.

5. RESULTS

In this section, some aspects of the SM-AP algorithm us-

ing different choices for the CV are studied. These aspects

are: (i) steady-state MSE level in stationary and nonstation-

ary environments, (ii) convergence speed, and (iii) influence

of γ in the steady-state MSE. The CVs considered are the

SC-CV, FMEB-CV, ED-CV (see Definitions 1 to 3), and the

general-choice CV (GC-CV), which is defined as γi(k) , γ

for i = 0, 1, . . . , L.

5.1. Simulation Scenario

We consider the problem of identifying an unknown system [3]

whose impulse response is h(k) = wo for all k, where wo ,

[0.1 0.3 0 − 0.2 − 0.4 − 0.7 − 0.4 − 0.2]
T
. When eval-

uating the nonstationary behavior, which happens only in Fig. 4,

the impulse response of the unknown system is given byh(k+
1) = λhh(k) + nh(k), where h(0) = wo, λh=0.99, and
nh(k) is white and Gaussian with variance 0.0015.

The input signal is drawn from a standard normal distribu-

tion and the noise variance is σ2
n = 10−2. Most of the results

were obtained by repeating the experiment 5× 103 times ex-

cept for the results in Fig. 6, in which we took an average of

the last 104 samples from each of the 100 experiments, and

then averaged over the experiments, as done in [5]. In addi-

tion, the adaptive filter order is N = 7, which is the same or-

der of the unknown system, and is initialized withw(0) = 0.

The regularization factor is δ = 10−12.
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5.2. Simulation Results

Figs. 3 to 5 depict the MSE learning curves for the SM-AP

algorithm with different CVs. The standard AP algorithm is

used as benchmark. Fig. 6 depicts steady-state excess MSE

(EMSE) as a function of γ.

In Figs. 3 and 4, the steady-state MSE in stationary and

nonstationary environments is evaluated, respectively. Hence,

the algorithms were set so that they have similar convergence

speeds in the early iterations. In addition, the parameter γ

is chosen as γ =
√

τσ2
n with τ = 3, which is a recom-

mended value for both the SC-CV [6] and FMEB-CV [5] in

order to achieve a balance between low steady-state MSE and

low probability of update. Figs. 3(a) and 4(a) consider L = 1
(binormalized version of the algorithms), whereas L = 4 in

Figs. 3(b) and 4(b).

Comparing Figs.3(a) and 3(b), despite the higher conver-

gence speed and also a bit higher steady-state MSE exhib-

ited by the algorithms using L = 4, these figures follow the

same pattern. Indeed, the GC-CV led to the worst steady-state

MSE, while the FMEB-CV led to a steady-state MSE level

similar to the one achieved by the AP algorithm. The SC-

CV led to the lowest steady-state MSE level, while the ED-

CV reached an intermediate (i.e., between the SC-CV and the

FMEB-CV) MSE level. In addition, using Fig.3(a) as exam-

ple, the SM-AP employing the GC-CV, SC-CV, FMEB-CV,

and ED-CV updated only about 45%, 20%, 30%, and 21% of

the iterations, respectively. Fig. 3 illustrates the importance

of a proper choice for the CV and also shows that the SM-

AP can achieve similar to better results compared to the AP

algorithm besides saving computational power.

In Fig. 4 the nonstationary behavior of the SM-AP is as-

sessed. Once again, the GC-CV led to the worst results, while

the results obtained using the SC-CV, FMEB-CV, and ED-CV

are similar to the one of the AP algorithm. In fact, we ob-

served that the ED-CV was a bit better than the others since it

achieved the lowest steady-state MSE and also had the lowest

probability of update. In Fig.4(b), e.g., the SM-AP employing

the GC-CV, SC-CV, FMEB-CV, and ED-CV updated about

70%, 62%, 63%, and 60% of the iterations, respectively.

In Fig. 5, the convergence speed is studied. Hence, the

algorithms were set so that they reach a similar steady-state

MSE level. Fig. 5 shows that, for an arbitrarily given MSE

level, the SM-AP with SC-CV was the slowest algorithm but

also had the lowest probability of update. The highest conver-

gence speeds were achieved by the SM-AP with FMEB-CV

and the AP algorithms, with advantage for the SM-AP algo-

rithm that does not update in all iterations. Interestingly, the

convergence speed provided by the ED-CV was very close

to the one of the FMEB-CV, but the ED-CV requires less

updates. In this particular setup, the SM-AP employing the

SC-CV, FMEB-CV, and ED-CV updated about 8%, 65%, and

11% of the iterations, respectively.
Fig. 6 depicts the steady-state excess MSE (EMSE) as a

function of τ , a parameter that determines γ =
√

τσ2
n, for dif-

0 50 100 150 200 250 300

−15

−10

−5

0

Number of iterations, k

M
S

E
 [

d
B

]

 

 

SM−AP (SC−CV)

SM−AP (FMEB−CV)

SM−AP (ED−CV)

Affine Projection

Fig. 5. Learning curve considering L = 4. Algorithms were

set so that they reach a similar steady-state MSE.

ferent values of L. Observe that when τ = 0, i.e., γ = 0, the
SM-AP employing the FMEB-CV and the ED-CV become

the standard AP algorithm (i.e., AP with step size equal to

1). In [5], it was shown that by judiciously choosing τ the

SM-AP with FMEB-CV could always achieve a steady-state

MSE lower than the one of the standard AP algorithm in sta-

tionary environments, a fact that is corroborated by Fig. 6(b).

Fig. 6(c) indicates that the same result should be valid for

the SM-AP with ED-CV, with the advantage that in the ED-

CV the range of values of τ leading to low EMSE is wider,

which means that it is easier to set the SM-AP with ED-CV.

Finally, Figs. 6(a) and 6(c) show that the SM-AP algorithm

using the SC-CV and the ED-CV, respectively, can use high

values of τ and still achieve low steady-state MSE. Recall

that higher τ implies lower probability of update, i.e., more

energy/computational saving.

6. CONCLUSIONS

In this paper, we focused on the advantages of set theoretic

estimation over the classical point estimation theory having

the SMF concept as the underlying framework. The SM-AP

algorithm was used since it is one of the most general algo-

rithms for set theoretic estimation, whereas the classical point

estimation was represented by the standard AP algorithm. In

this context, we emphasized the importance of defining the

constraint sets properly and the role played by the constraint

vector (CV) of the SM-AP algorithm. Indeed, we explained

why an arbitrary choice of CV may lead to poor results and

showed a general rule for choosing the CV while controlling

the noise enhancement. We discussed two widely used CVs

(viz., SC-CV and FMEB-CV), proposed a new one (viz., ED-

CV), and interpreted their updating processes from both ge-

ometrical and analytical viewpoints. Simulation results show

that the convergence speed of the SM-AP with ED-CV is al-

most as high as the one of the SM-AP with FMEB-CV, since

the ED-CV exploits all directions (columns) of matrix A(k),
but its steady-state MSE level is much lower. In addition, the

SM-AP with ED-CV was the most efficient in nonstationary

environment and also presented a low probability of update,

sometimes even lower than for the SM-AP using SC-CV.
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Fig. 3. Learning curve considering τ = 3 in γ =
√

τσ2
n. Algorithms were set so that they have similar transient response.
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Fig. 4. Learning curve in nonstationary environment using τ = 3 in γ =
√

τσ2
n. Algorithms with similar transient response.
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(b) FMEB-CV
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Fig. 6. Steady-state Excess MSE vs. τ , where γ =
√

τσ2
n.
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