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ABSTRACT

We present NISI, a novel non-intrusive speech intelligibility
assessment method based on feature extraction and a binary
tree regression model. A training method using the intrusive
STOI method to automatically label large quantities of speech
data is presented and utilized. Our method is shown to predict
speech intelligibility with an RMS error of 0.08 STOI on a test
database of noisy speech.

Index Terms— Speech Intelligibility, Speech Quality,
Classification and Regression Trees, Data Driven

1. INTRODUCTION

The performance of many speech processing systems worsens
in the presence of signal degradations. In law enforcement au-
dio collection, very severe degradations can arise and reduce
the intelligence value of audio by making it unintelligible or
inadmissible in a court of law [1].

The perceptual effects of distortions on the speech sig-
nal are typically measured through speech quality assessment
techniques [2]. Certain speech assessment techniques con-
sider speech intelligibility to be an aspect of speech quality,
as in the diagnostic acceptability measure [3]. It is an impor-
tant quantifier for applications such as telecommunications,
where a channel may be evaluated in terms of its effect on
speech intelligibility [4], as a performance metric for hearing
aids [5], for determining the impact of an acoustic space on
speech [6] and for intelligence gathering in law enforcement
applications [7].

Speech intelligibility can be defined as a measure of the
proportion of a speech signal’s content correctly recognised
by alistener. A number of methods have been proposed in the
literature for obtaining speech intelligibility scores and these
may be classified as either subject-based or objective meas-
ures. Subject-based speech intelligibility scores are obtained
through listening experiments where subjects listen to speech
samples and their performance in a particular linguistic task is
measured. The linguistic task may be to recognize nonsense
syllables, isolated words or specific keywords in a sentence.
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Objective intelligibility assessment methods operate with-
out the need for human listeners and can provide rapid intelli-
gibility scores. These can be further divided into two classes:
(1) those requiring a reference signal in addition to the test
signal are referred to as intrusive methods, and (ii) those op-
erating only on the signal under test are referred to as non-
intrusive methods.

One of the earliest intrusive intelligibility technique was
proposed by French and Steinberg [8] as the Articulation In-
dex (AI), which was further developed into the Speech Intel-
ligibility Index (SII) and led to an ANSI standard [9]. The
SII evaluates the effects of degradations in a number of fre-
quency bands, weighted by their importance to speech intel-
ligibility, and quantifies the proportion of the speech signal
that is intelligible to the listener. The SII score is mono-
tonically related to the intelligibility of the speech utterance
and is given in the range 0 to 1 (where a score of 0.5 means
that half of the speech cues are audible and usable to the lis-
tener) [10]. More recently, the Short-Time Objective Intelli-
gibility (STOI) method for intrusive intelligibility assessment
has been proposed which has been shown to have a high cor-
relation (better than 0.92) with subjective intelligibility scores
for both noisy and noise-suppressed speech [11].

The low complexity speech intelligibility
method (LCIA) [12] is a data-driven non-intrusive mea-
sure that has been shown to have a high per-condition
correlation with subjective intelligibility scores of noisy and
noise suppressed speech. The LCIA method has been evalu-
ated using subjective sentence intelligibility scores from [13]
but this provided only a limited number of degradation
conditions.

In this paper we propose the non-intrusive speech intelli-
gibility (NISI) method and evaluate its performance on a large
database of noisy speech labeled with intelligibility scores
using the intrusive STOI [11] method. The use of an intru-
sive method such as STOI in this case to label the database
automatically instead of subject-based intelligibility labelling
has the advantage of allowing for a large training and evalua-
tion of non-intrusive methods to be performed at substantially
lower financial and time costs.

The remainder of this paper if organized as follows. Sec-
tion 2 reviews the LCIA method and the NISI method is



presented in Section 3, followed by evaluation methodology,
databases and metrics in Section 4. The results are presented
in Section 5 followed by conclusions in Section 6.

2. LCIA REVIEW

The LCIA method [12] is a data-driven approach for low-
complexity, non-intrusive speech intelligibly assessment; it is
a development of the LCQA method [14] with a new feature,
importance weighted SNR (iSNR), an external Voice Activ-
ity Detector (VAD), the use of a two-step feature selection
and projection technique and is trained on speech data labeled
with intelligibility scores. The LCIA method begins by deriv-
ing per frame features from the speech waveform, then apply-
ing a statistical model followed by a two-step dimensionality
reduction and Gaussian Mixture Model (GMM) mapping. In
contrast to LCQA, the pitch period is not used as a feature
in LCIA due to the computational complexity of pitch track-
ing, and the poor correlation of this feature with subjective
intelligibility scores [12], particularly for highly degraded au-
dio. The features are listed in Table 1. The statistics of the
per-frame features results in a 44 dimensional feature vec-
tor per utterance, which is further reduced in dimension by a
correlation based feature selection and principal component
analysis (PCA) based feature projection. The intelligibility
score is obtained from the output of a joint GMM (diagonal
covariance matrix), trained on the projected features and the
intelligibility score for each speech utterance in the training
data.

3. NISIMETHOD

The Non-Intrusive Speech Intelligibility (NISI) method is a
data-driven, machine learning approach to speech intelligibil-
ity estimation whose overall structure is presented in Fig. 1.
The first step is a short-time segmentation of the input sig-
nal into 20 ms frames employing a non-overlapping Hanning
window, denoted y(i), where i is the frame index. This is fol-
lowed by VAD based on the P.56 method [15] to select frames
where speech is present. This is then followed by short-term
feature extraction and the statistics of the short-term features
(mean, variance, skewness and kurtosis) are used to charac-
terize the entire signal and combined with the long-term fea-
tures to create the final feature vector of dimension 116. The
features form the input to a CART regression model that has
been previously trained on a feature matrix with correspond-
ing ground truth scores. The features used in NISI method
are listed in Table 1 and further described in the following
subsections.

3.1. Short-term features

The short-term feature extraction follows the time segmen-
tation of the input speech signal into voice-active frames and
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Fig. 1. Overview of the NISI method. The dimension of the
features after each block is shown in ().

are described as follows. The NISI method makes use of pitch
estimates, and rate of change of pitch, obtained from the new
PEFAC algorithm [16] that has been shown to be robust to
additive noise. The iSNR [12] feature is an intelligibility spe-
cific frequency weighted measure to quantify the effects of
additive noise in the signal and is a feature in NISI along with
the rate of change of iSNR over the utterance. A 10th order
linear predictive coding (LPC) is performed on the speech sig-
nal, and the residual variance and its rate of change over the
utterance are included as features. Additionally, the spectral
centroid, flatness and dynamics of the LPC magnitude spec-
trum are computed, as in [14], and included in the feature
vector along with their rates of change. The zero crossing
rate and its rate of change over the utterance are also used
as features. The NISI method utilises features based on the
Hilbert envelope:

(i) = Vy(0)2 + 2 (y(i))?, (1)

where ¢(4) is the envelope of the i*”* frame of y(n) and #{.}
is the Hilbert transform. The variance (c.(;)) and dynamic
range (A.(;)) of the envelope for each of the IV; frames are
computed as follows and used as features:

N;
Oe(i) = ﬁ Z Me(l (2

Ay = | max(e(i)) — min(e(7))]. ©)

Additionally, the rates of change of these features are in-
cluded.

The long term average speech magnitude spectrum
(LTASS) is often used as a model for the clean speech spec-
trum. The power spectrum of long term deviation (PLD) fea-
ture for frame ¢ and frequency bin k is defined as:

PLD(i, k) = log(P,(i, k)) — log(Prrass(k)), (4
where P, (i, k) is the magnitude power spectrum of noisy sig-
nal and Prrass(k) is the LTASS power spectrum.The per-
frame PLD spectrum is used to derive the spectral flatness
(PLD Flatness), spectral centroid (PLD Centroid) and spec-
tral dynamics (PL.LD Dynamics) features. The spectral flat-
ness, dynamics and centroid of PLD spectrum and their rate

of change are included as short-term features in NISI.
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PLD Dynamics 12 | P24
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Table 1. The features used in the LCIA method (¢1.11) and
NISI method (¢1.41). The columns labelled ¢» and A ¢ denote
the raw features and their time derivatives respectively.

3.2. Long-term features

The long-term deviation of the magnitude spectrum of the sig-
nal (calculated over the entire utterance) is defined as follows

1 &
Prrop(k) = 5 D PLD(i, k). )
ti=1

The resulting P71 p spectrum is mapped into 16 bins each
with a bandwidth of 500 Hz and 50 % overlap. The energy in
each bin as a percentage of the total energy is then computed
to form the long term features in NISI. It is intended that this
feature can identify the long-term frequency characteristics of
different types of degradations.

3.3. Classification and Regression Tree

The CART algorithm [17] is used to construct a regression
tree for modeling speech intelligibility using the previous fea-
ture extraction mechanism. CART recursively partitions the
feature space using binary splits into a number of terminal
nodes, each containing a constant predicted response value.
In this use of CART, first, an over-sized and sub-optimal tree
is grown using a minimum mean square error (MSE) crite-
rion. This is followed by a pruning process using 10-fold
cross-validation of the training data to merge tree branches
that result in small reduction in the MSE.

4. EVALUATION

4.1. Databases

The training and validation database (referred to here as the
TN database) is based on the TIMIT database [18], which
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Fig. 2. STOI estimation performance using the TCHR metric.

contains speech from 623 speakers of US English. In the
TN database, only the distinct utterances are used for all the
speakers. An extensive additive noise database is then cre-
ated by adding 15 noises from the NATO noise database [19]
at SNRs in the range -24 to 30 dB in 3 dB steps. The resulting
TN database is composed of 285 additive noise conditions for
each speaker.

The additive noise partition of the C-Qual database [20],
comprising of car, babble and hum noise representing 21 con-
ditions for each of 4 speakers is used only as a generalization
test database as it contains different speech and noise material
from the TN database. All databases were down-sampled to
8 kHz to represent narrow-band speech transmission.

4.2. Training

The original TIMIT database is partitioned into a training
and test partition; this is maintained in the TN database, with
the training partition consisting of 168 speakers randomly se-
lected from the original 455 speakers in the TIMIT training
partition. All data-driven algorithms are trained on the TN
training partition and also tested on the entire test partition.
Additionally, cach noise file was also split into a training and
test partition so that the noise source samples in the training
and test partitions are different. The resulting TN database
consists of more than 46 hours of speech material.

4.3. Evaluation Metrics
4.3.1. Spearman Correlation Coefficient (SCC)

The Spearman rank correlation coefficient (SCC) is a non-
parametric measure that describes the monotonic relationship
between two ranked variables [21] in the range -1 to +1.



4.3.2. Root Mean Square Error (RMSE)

The root mean square error between the estimated and true
scores is calculated as a measure of the estimation accuracy
of each algorithm.

4.3.3. Bin Error

This measure evaluates the absolute mean residual error in
the true and estimated STOI scores in bins of size 0.05 STOI,
by dividing the STOI scale into 20 bins. This metric shows
the percentage of signals that lie in each bin and provides a
histogram view of the errors.

4.3.4. Two Class Hit Rate (TCHR)

This measure investigates the hit rate achieved by splitting the
ground truth scores into two classes (according to an accep-
tance threshold). The acceptance threshold is set to the STOI
score corresponding to 75% intelligibility, as provided by the
mapping function proposed in [11] to be 0.62 STOI. The mo-
tivation for this comes from a previous study [22] where a
threshold of acceptance at 75% was found to be practical for
intelligibility assessment. The TCHR metric is also evaluated
at a number of other threshold values to assess how the per-
formance changes with different threshold values. Thresholds
in the 0.5 to 0.7 STOI range are evaluated, corresponding to
word intelligibility scores from 28% to 93% words correct.

5. RESULTS

5.1. Performance for TN database

Table 2 shows the performance of the LCIA and NISI meth-
ods in estimating STOI on the TN database. The NISI method
outperforms LCIA on all metrics tested, achieving an SCC of
0.95 and an RMSE of 0.08 STOI. The NISI method has a high
accuracy, with 93.3% of errors less than 0.15 STOI and for an
acceptance threshold of 0.62 STOI, the TCHR performance is
nearly 95%. The LCIA method also has a high correlation in
this task (SCC = 0.91) but a poor estimation accuracy, with an
RMSE of 0.18. The performance of the methods for different
acceptance thresholds is presented in Fig. 2, where NISI can
be seen to have a consistent performance with a TCHR higher
than 90% in the region of 0.5 to 0.7 STOI (28% to 93% intel-
ligibility). The 5 best ranked features for STOI estimation are
presented in Table 3, where the iSNR, LPC dynamics, PLD
Flatness are seen to be most important short-term features.
Also, the long-term PLD based feature, ¢-7 (deviation in the
250-750 Hz band) is important.

5.2. Performance for C-Qual database

The generalization performance of the methods is presented
in Table 4, where the methods are trained on the TN database

Bin Error (%) TCHR

SCC | RMSE | <0.1 | <0.15| <0.2 | @0.62

NISI | 095 | 0.08 854 93.3 97.0 94.7

LCIA | 091 0.18 45.4 61.3 72.9 80.9

Table 2. STOI estimation on the TN database.

Rank | LCIA NISI
U] plds) | p(ds)
2 a(de) | o(¢2)
3 w(ds) | o(¢23)
4 | alg2) | ul(es)
5 p(d2) | ot

Table 3. 5 best ranked features for TN database. The mean
() and variance (o) are important statistics.

and tested on the additive noise partition of the C-Qual
database. The overall performance for both methods in this
task is lower, with the best performance provided by NISI
(SCC of 0.86 and RMSE of 0.12). This may be partly due
to the differences in the types of degradations between the
C-Qual and TN databases.

Bin Error (%) TCHR

SCC | RMSE | <0.1 | <0.15| <0.2 | @0.62

NISI | 0.86 | 0.12 70.2 84.5 90.5 88.1

LCIA | 0.82 | 0.15 46.4 67.9 84.9 79.8

Table 4. STOI estimation on the C-Qual database.

6. CONCLUSIONS

The non-intrusive assessment of speech intelligibility was
considered in this paper. A novel data-driven method, NISI,
was presented and shown to correlate strongly with STOI.
Moreover, the performance of NISI was shown to be highly
consistent in the two class classification task, achieving a
hit rate higher than 90% over a large range of intelligibility
scores. The proposed PLD based features were shown to be
important for predicting the STOI scores in the TN database.
The LCIA method was further evaluated for predicting STOI
scores of noisy speech. A novel technique for automatically
labeling databases for speech intelligibility using the intru-
sive STOI method was also presented. The TN database was
developed by adding 15 noises at SNRs in the -24 to 30 dB
range to clean speech from the TIMIT database. The result-
ing database was split into a test and training partition with no
overlap of noise source, speakers or speech material and the
LCIA and NISI methods were evaluated on this database.
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