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ABSTRACT

In this work we address the optimal rate adaptation prob-

lem of a cognitive radio (CR) link in time-variant channels. A

secondary user (SU) link detects an idle channel and starts the

transmission with the goal of transmitting a given amount of

data packets. During the transmission the transmitter dynami-

cally adapts the frames rate, from a finite number of available

rates, according to the channel state. If a frame is decoded

with error, the corresponding data must be retransmitted in

further frames. If a primary user (PU) access the channel dur-

ing the process, the CR link immediately stops the transmis-

sion. The rate adaptation problem is formulated as an infinite-

horizon Markov decision process (MDP). We split the prob-

lem in a finite number of much simpler MDP problems that

can be efficiently solved by conventional MDP solving algo-

rithms. So, the optimal policy and the corresponding maxi-

mum probability of successful transmission can be easily ob-

tained.

Index Terms— Cognitive radio (CR), Markov decision

processes (MDP), rate control

1. INTRODUCTION

Recently, IEEE 802.22 working group has released the first

cognitive radio (CR) standard for wireless regional area net-

works [1]. This standard supports rate adaptation using adap-

tive modulation and coding. It also allows secondary users

(SU) to support frames retransmission through an automatic

repeat request (ARQ) mechanism so that SU’s can setup ARQ

enabled connections.

This work focuses on opportunistic spectrum access

(OSA) in hierarchical CR networks where the SU’s only

use the licensed spectrum when primary users (PU) are not

transmitting. We consider a single SU link which makes its

own decision on the spectrum access strategy, based on local

observation of the spectrum dynamics. We assume that the

SU’s can adapt the transmission rate according to the channel

This work was supported by the Spanish Government, Ministerio

de Ciencia e Innovación (MICINN), under projects COSIMA (TEC2010-

19545-C04-03) and COMONSENS (CSD2008-00010, CONSOLIDER-

INGENIO 2010).

fading dynamics and the PU’s channel access statistics. We

also assume that the SU’s support ARQ protocol, so when

a frame is decoded with error, its data is retransmitted in a

further frame.

Rate adaptation of SU links in CR has been widely ad-

dressed in the technical literature, [2], [3], [4]. However, none

of the above works consider frames retransmission. In [5]

frames retransmission was taken into account, but assuming

time-invariant channel. To the best of our knowledge, optimal

rate adaptation while considering retransmissions of failed

frames over time-varying channels has not been addressed so

far in the context of OSA.

We formulate this rate adaptation problem as an infinite-

horizon finite Markov decision process (MDP) [6], [7], [8].

From the Bellman’s equation, we decompose the problem into

a finite number of much simpler MDP problems so the opti-

mal rate adaptation policy can be easily obtained by any con-

ventional dynamic programming (DP) algorithm, as well as

the probability of successful transmission.

The remaining of this paper is organized as follows. First,

we present the system model in section 2. Section 3 briefly

review the time-invariant channel case and in section 4 we

present the its generalization to the time-variant case. Section

5 presents numerical result to support the proposed model and

finally section 6 presents the conclusions of this work.

2. SYSTEM MODEL

Let us consider a SU link that periodically senses the spec-

trum band. Once it detects an idle channel, it starts the trans-

mission with the goal to transmit a fixed-size file, comprising

N packets. During the transmission, the SU adapts the trans-

mission rate aiming to maximize the probability of transfer-

ring the entire file before a PU reclaims the channel.

We assume that all the packets have the same length and

that each one is encapsulated in single frame. We consider K

different types of frames characterized by its rate and its du-

ration tC(k). We consider a conventional ARQ mechanism

to overcome transmission errors. Once the receiver receives

a frame, it sends an ACK (acknowledgement) packet back to

the transmitter through an instantaneous error-free feedback

EUSIPCO 2013 1569741555

1



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

 

 0 

 

1 

 

2 

 

3 

 

S 

 

F 

1i = 2i = 3i = 4i = 5i =

6i =

2k =

1k =

2k =2k = 2k = 2k =
2k =

1k = 1k = 1k = 1k =
1k =

Fig. 1. Transition graph in the case of K = 2 available rates

channel to inform whether the frame has been correctly de-

coded or not.

We use β(k) to denote the probability that the PU’s do

not access the channel during the transmission of a frame of

length tC(k). Notice that we are considering a memoryless

channel in the sense that β(k) solely depends on the frame

duration and not on the lapsed time since the last PU access.

3. TIME-INVARIANT CHANNEL

Assuming a SU non-fading channel, the frame error rate

(FER) will solely depend on the type of frame. It will be

denoted by pe(k), k = 1, ...,K.

3.1. Problem formulation as a MDP:

• Controls: The controls are the available rates: k ∈
{1, 2, ...,K}.

• States: There are NS = N + 2 possible states, that are

indexed and classified as follows

– Transient states: 1 ≤ i ≤ N .

– Success state (S): i = N + 1

– Fail state (F): i = N + 2

Each transient state is defined by the number of packets

successfully transmitted during the process, so the sys-

tem is in state i when i − 1 packets have been already

transmitted. The success state (S) is an absorbing state

and corresponds to the situation where all packets have

been transmitted, whereas the system falls in the ab-

sorbing fail state (F) when a PU has reclaimed the fre-

quency band before all packets have been transmitted.

To illustrate this, figure 1 shows the transition graph for

K = 2 and N = 4.

• Transition probabilities: There are three types of

transitions: 1) transitions from a transient state to it-

self when the transmitted frame has been decoded with

error, 2) transition from a transient state to another

transient state or to the success state when the frame

has been successfully transmitted, 3) transitions from

a transient state to the fail state when a PU reclaims

the channel. Therefore, the transition probability from

state i to j when control k is applied is

pki,j =































1, i = j > N

β(k)pe(k), i = j ≤ N

1− β(k), i ≤ N ∧ j = N + 2

β(k)(1− pe(k)), i ≤ N ∧ j = i+ 1

0, otherwise.

(1)

• Rewards: We define the transition reward from state i

to j when control k is applied as follows

rki,j =

{

1, i = N ∧ j = N + 1

0, otherwise.
(2)

In words, there is not reward until all blocks have been

successfully decoded. The expected immediate reward,

when the system is in state i and control k is applied,

will be

qki =
∑N

j=1 p
k
i,jr

k
i,j =

{

β(k)(1− pe(k)), i = N

0, i 6= N.

• Policies: A policy is defined by a column vector d =
[d1, d2, ..., dN ]T , where entry di denotes the control to

be used when the system is in state i and the superscript

T denotes transpose.

3.2. Optimal policy for maximum probability of success-

ful transmission

In [5], it is shown that the policy that maximizes the probabil-

ity of transmit the entire file (optimal policy d∗) is stationary

and given by

d∗i = argmax
k

a(k), ∀i (3)

where

a(k) =
β(k)(1− pe(k))

1− β(k)pe(k)
, k = 1, 2, . . . ,K. (4)

4. TIME-VARYING CHANNEL

The following subsection presents the model for the time-

variant SU link channel.
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4.1. Channel model

We consider a point-to-point frequency-flat block-fading

channel, where the channel remains constant during the trans-

mission of a frame, and can change for consecutive frames.

Let γ denote the channel power gain process. In general,

γ at different frames are time correlated, and the amount of

correlation depends on the frames duration.

To model the dynamics of γ we consider K discrete-time

first-order Markov chains; each one with time discretized to

tC(k), k = 1, 2, . . . ,K. The fading range 0 ≤ γ < ∞ is

discretized into M regions so that the m-th region is defined

as Rm = {γ : Am ≤ γ < Am+1}, where A1 = 0 and

AM+1 = ∞.

Let us consider the discrete random process {γd}, defined

as the channel state during the frames transmission. For a

given frame, the channel is in state γd = m if γ ∈ Rm dur-

ing the frame transmission. The transition probability from

channel state m to channel state n during the transmission of

a frame of length tC(k) is denoted by tkm,n.

In the technical literature (see [9] and references therein),

there are several models to analytically obtain these tran-

sition probabilities as function of the number of channel

states M , the intervals limits {Am} and the channel normal-

ized Doppler frequency fD. The later determines the rate

of variation of the channel with respect to the frames dura-

tion. Although the physical wireless channel is inherently

non-Markovian, it has been shown that stationary first-order

Markov chains can capture the essence of the channel dynam-

ics when the number of regions/states is low and the channel

fades slow enough [9]. Now, the FER’s will depend not only

on the frame rate but also on the channel state. Accordingly,

hereafter pe(k,m) will denote the FER when a frame of rate

k is transmitted and the channel state is m.

4.2. Formulation as a MDP

• Controls: The controls are the available rates.

• States: We consider a two-dimensional state space

(as depicted in figure 2) where the states components

(m, i) denote the channel state and the number of pack-

ets already transmitted, respectively. The total number

of states is NS = M(N + 2).

• Transition probabilities: The probability of transi-

tioning from state (m, i) to state (n, j), when a frame

of type k is transmitted, is

pk(m,i),(n,j) = (5)

tkm,n ·































1, i = j > N

β(k)pe(k,m), i = j ≤ N

1− β(k), i ≤ N ∧ j = N + 2

β(k)(1− pe(k,m)), i ≤ N ∧ j = i+ 1

0, otherwise.
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Fig. 2. Two-dimensional states arrangement.

Note that, unlike the time-invariant case, the FER,

pe(k,m) depends on both, the type of frame end the

channels state.

• Rewards: We consider the following transition re-

wards

rk(m,i),(n,j) =

{

1, i = N ∧ j = N + 1

0, otherwise.
(6)

where rk(m,i),(n,j) denotes the transition reward from

state (m, i) to state (n, j) when a frame of type k is

transmitted. So there is no reward until the entire file

has been successfully transmitted.

Considering (5) and (6) the expected immediate reward

when the system is in state (m, i) and a frame of type k

is transmitted is

qkm,i =

{

β(k)(1− pe(k,m)), i = N

0, otherwise.
(7)

• Policies: We write dm,i = k to denote that the policy

assigns control k to the state (m, i). Note that policy

values dm,N+1 and dm,N+2 are not relevant because,

when the system is in that states, the transmission has

already finish or a PU has reclaimed the channel.

4.3. Probability of success for a given policy

In the following we derive a simplified algorithm to compute

the probability of successful transmission for a fixed policy,

that is, the value vector of the policy.

We define the policy vector

d =
[

(d1)
T
, (d2)

T
, . . . , (dN+2)

T
]T

, (8)

3
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where di = [d1,i, d2,i, . . . , dM,i]
T
, i = 1, . . . , N . Policies

for states with the same i (same number of packets transmit-

ted) are grouped in vectors di.

We define the immediate reward vector analogously

qd =
[

0T , . . . , 0T ,
(

qdN

N

)T
, 0T , 0T

]T

, (9)

where 0 denotes the all-zeros M × 1 vector and

qdN

N =
[

q
d1,N

1,N , q
d2,N

2,N , . . . , q
dM,N

M,N

]T

(10)

The values of each policy are also grouped in a vector as

vd =
[

(

vd
1

)T
,
(

vd
2

)T
, . . . ,

(

vd
N

)T
, 0T , 0T

]T

, (11)

where vd
i =

[

vd
1,i, v

d
2,i, . . . , v

d
M,i

]T

, i = 1, . . . , N . Notice

that, the values of states with identical i (same number of

packets transmitted) are grouped in vector vd
i and that the val-

ues for the absorbing states are always zero, for all policies.

From (5), the transition matrix for any policy d, Pd, is a

block sparse upper triangular matrix with the following struc-

ture























Pd1

0 Pd1

1 0 · · · 0 0 0 Pd1

2

0 Pd2

0 Pd2

1 · · · 0 0 0 Pd2

2
...

...
...

...
...

...
...

...

0 0 0 0 PdN

0 PdN

1 0 PdN

2

0 0 0 0 0 0 TdN+1 0

0 0 0 0 0 0 0 TdN+2























,

where the blocks are M ×M matrices given by

Pdi

0 = BdiPdi

e Tdi ,

Pdi

1 = Bdi(I − Pdi

e )Tdi ,

Pdi

2 = (I − Bdi)Tdi ,

Tdi = [tdi,m

m,n ]M×M ,

Bdi = diag([β(d1,i), . . . , β(dM,i)]),

Pdi

e = diag([pe(d1,i, 1), . . . , pe(dM,i,M)]).

The Bellman equation for a policy d will be

vd = qd + Pdvd. (12)

Considering (12) and the particular structures of vd, qd and

Pd in our problem, the computation of the policy value vector

can be split in N iterations as follows

vd
N+1 = vd

N+2 = 0

vd
N = PdN

0 vd
N + qdN

N ,

vd
i = Pdi

0 vd
i + Pdi

1 vd
i+1, i < N. (13)

According to (7) and (10), qdN

N = 1 · PdN

1 , where 1 is the all-

ones vector of size M × 1. Therefore, the values of a policy

can be efficiently computed in a backward recursively way as

follows

vd
i = A(di) ·

{

vd
i+1, i < N

1, i = N
, i = N, . . . , 1. (14)

where A(di) is a M ×M matrix given by

A(di) =
(

I − Pdi

0

)−1
Pdi

1 , i = 1, . . . , N. (15)

The entry (m,n) of A(di) is just the transition probabil-

ity from the transient state (m, i) to the state (n, i+ 1) under

the policy vector di, taking into account the frame retransmis-

sions.

Note that equations (15) can be viewed as the generaliza-

tions of (4) to the case of time-varying channel.

4.4. Optimal policy

From (14), the optimal values and policy can be computed

backward iteratively as follows

v∗

i = max
d

A(d) ·

{

v∗

i+1, i < N

1, i = N
, (16)

d∗

i = argmax
d

A(d) ·

{

v∗i+1, i < N

1, i = N

Each iteration of (16) can be viewed as a simple M -states

MDP problem

ṽ
∗ = max

d̃

P̃
d̃
ṽ
∗ + q̃

d̃, (17)

where d̃, q̃
d̃

and ṽ
d̃

are M × 1 vectors and P̃
d̃

are M ×M

transition matrices. Moreover, the transition matrices are the

same for all iterations; only the vectors of immediate rewards

q̃
d̃

changes from one iteration to another as follows

q̃
d̃
i =

{

Pd̃
1vd̃

i+1, i < N

qd̃
i , i = N

(18)

Therefore, in each iteration, the optimal policy and op-

timal values can be efficiently computed with any conven-

tional DP algorithms thanks to the reduced number of channel

states.

5. NUMERICAL RESULTS

This section shows some numerical simulations to illustrate

the benefits of the rate adaptation scheme. We consider K =
3 available rates and M = 4 channel states. The correspond-

ing FER’s, pe(k,m), are shown in table 1. We model the PU’s
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Action m = 1 m = 2 m = 3 m = 4

1 0.0537 0.0151 0.0033 0.0006

2 0.1987 0.0917 0.0316 0.0083

3 0.2858 0.1785 0.0927 0.0398

Table 1. Frame error probabilities for different rates and

channel states (m).

access to the channel as a Poisson process with access rate λ,

so the probability that the PU’s do not access the channel dur-

ing the transmission of a frame of type k is β(k) = exp−λt(k).

Figure 3 shows the probability of successful transmission

(of transmiting the entire file) as a function of the number of

packets N , assuming λ = 5, M = 4 channel states and max-

imum Doppler frequency fD = 20Hz. The frames duration

are tC(1) = 4ms, tC(2) = 3ms and tC(3) = 2ms. The

figure shows the performance of the rate adaptation scheme

when the optimal policy is follow (d∗), and the static policies

where the same type of frame (d = 1, 2 or 3) is always used.

It shows significant improvement when using rate adaptation,

the optimal policy d∗ behaves at least as good as the best static

policy.
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Fig. 3. Probability of success as a function of the number of

packets for different policies.

6. CONCLUSIONS

In this work we have studied the rate adaptation problem of a

SU link in hierarchical CR networks from a cross layer per-

spective. Unlike other related works, we have considered that

the link channel is time-varying, and we have taken into ac-

count the retransmission of erroneous frames. The SU op-

portunistically access the channel with the goal to transmit a

given number of packets (data file) during a sojourn time of

the PU’s idle state.

We only consider a single SU link operating, taking multi-

ple SU’s competing to access the channel into account would

require a more complex MDP model. Nonetheless, we sug-

gest that our scheme could be used in simple devices with

low requirements in terms of delay, for example some wire-

less sensors.

The adaptation problem have been formulated as a MDP

problem with a two-dimensional state set. Considering the

specific structure of the transition probabilities, we have sim-

plified the original (an complex) MDP problem by splitting it

in a number of simple MDP problems with much less number

of states, that can be easily solved with any conventional DP

algorithm.
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