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ABSTRACT
In this paper, we introduce computationally efficient imple-
mentations of the data-dependent non-parametric damped
Capon (dCapon) and APES (dAPES) spectral estimators.
These estimators form two-dimensional frequency represen-
tations over both frequency and damping, and have been
shown to enable an efficient separation of closely spaced
spectral lines with different line widths. The proposed imple-
mentations are formed using an FFT-based fast polynomial
reformulation exploiting the displacement structure of the
matrices associated with the trigonometric polynomials that
appear in the nominator and the denominator of the spec-
tral estimators. The resulting implementations are exact and
notably reduces the required computational complexity of
the estimators. Numerical simulations illustrates the perfor-
mance and the achieved complexity gain of the proposed
implementations.

Index Terms— Spectral estimation, damped sinusoidals,
Capon, APES, computationally efficient implementations

1. INTRODUCTION

In a wide variety applications, the signal of interest may be
well modeled as consisting of a sum of decaying sinusoidal
signals, wherein one has an interest of estimating both the
frequencies and the decays of the signal components (see,
e.g., [1–6] and the references therein). Consider a signal,
x(n), consisting of d decaying sinusoidal signals corrupted
by an additive noise, w(n), typically representing both the
measurement noise and the inherent modeling error, such that

x(n) =

d
X

k=1

↵ke
��kn+|!kn

+ w(n) (1)

where n = 1, . . . , N , and ↵k 2 C, �k > 0, and !k 2 (0, 2⇡]

denote the amplitudes, damping factors, and the (angular)
frequencies of the kth component, respectively. In some
cases, the number of decaying modes, d, is known, whereas
in other cases it is unknown and must therefore be estimated
from the available measurements; herein, we are concerned

The work of A. Jakobsson was supported in part by the Swedish Re-
search Council and Carl Trygger’s foundation.

with this latter, more general, problem, treating d as un-
known, as well as posing no strong a priori assumption on
the color of the additive noise. It often happens in, e.g., spec-
troscopic applications, that the decaying modes are closely
spaced in frequency, but exhibit notably different damping
factors, implying that the spectral lines will have different
line width. The resulting spectral peaks are thus often over-
lapping, making it difficult both to distinguish the weaker
modes, as well as corrupting the estimates of the compo-
nent’s damping constants, which are often formed as the peak
width at half the peak height. To address this problem, the
non-parametric damped Capon (dCapon) and APES (dAPES)
spectral estimation techniques were introduced in [1] to form
two-dimensional (2-D) representations of the spectral dis-
tribution over frequency and damping, thereby effectively
allowing for a separation of modes being closely spaced in
frequency, but having notable different line widths. This
concept was there found to well separate the modes, and the
concept has since been both applied and generalized to other
forms of 2-D representations [6–8]. Although both the Capon
and APES spectral estimators may be efficiently implemented
for a given damping constant using methods reminiscent to
the ones developed in [9–12], the damped estimators as such
are computationally cumbersome as no similar speed-up has
been developed for the evaluation of the estimators over also
the damping dimension. Such an efficient implementation is
the topic of this work, wherein we introduce fast polynomial
implementations of both the dCapon and dAPES estimators,
exploiting efficient Gohberg-Semencul (GS) style formula-
tions for the required matrix products and inverses, thereby
reducing the required computational complexity dramatically.

2. THE DAMPED CAPON AND APES ESTIMATORS

In this section, we briefly review the dCapon and dAPES
spectral estimators, as well as introduce polynomial formu-
lations of the estimators reminiscent to the ones introduced
in [13, 14]. Following the matched filter bank framework, di-
viding the observation into L sub-vectors,

xM (n) =

⇥

x(n) x(n+ 1) . . . x(n+M � 1)

⇤T

(2)
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for n = 1, . . . , L, where L = N � M + 1, these are fil-
tered through a set of data-adaptive filters formed such that
each is passing a given frequency and damping, say (!,�),
undistorted, whereas the power from all other frequencies and
dampings are suppressed as much as possible by the filter.
Thus, the filter output may be written as

h⇤
!,�xM (n) = ↵e

��n+|!n
+ w̄(n) (3)

where (·)⇤ denotes the conjugate transpose, and w̄(n) the
filtered noise process, containing both the contributions from
the additive (potentially colored) noise and the filtered modes
from all other frequencies and dampings than (!,�), im-
plying that the 2-D least-squares energy spectral estimate at
(!,�) may be formed as [1](see also [4])

ˆ

�!,� = �N,� |↵̂!,� |2 (4)

where

↵̂!,� = h⇤
!,�g!,� (5)

g!,� =

1

�L,�

L
X

n=1

n

xM (n)e

��n
o

e

�|!n (6)

�`,� =

X̀

n=1

e

�2�n
= e

�2� e
�2�` � 1

e

�2� � 1

(7)

with the data-adaptive filters, h!,� , being formed as either the
Capon- or APES-based filters

hC
!,� =

ˆR�1
x sM (!,�)

s⇤M (!,�)

ˆR�1
x sM (!,�)

(8)

hA
!,� =

ˆQ�1
!,�sM (!,�)

s⇤M (!,�)

ˆQ�1
!,�sM (!,�)

(9)

where s`(!,�) denotes the `⇥ 1 (damped) Fourier vector

s`(!,�) =
h

1 z!,� . . . z

`�1
!,�

iT

(10)

with z!,� = e

��+|! , and where ˆRx denotes an estimate of
the sample covariance matrix of xM (t), typically formed as

ˆRx =

L
X

`=1

xM (`)x⇤
M (`) (11)

and ˆQ!,� is an estimate of the (frequency and damping de-
pendent) noise covariance matrix formed as

ˆQ!,� =

ˆRx � �L,�g!,�g
⇤
!,� (12)

which, by exploiting the matrix inversion lemma, implies that

ˆQ�1
!,� =

ˆR�1
x +

�L,�
ˆR�1
x g!,�g

⇤
!,�

ˆR�1
x

1� �L,�g⇤
!,�

ˆR�1
x g!,�

(13)

In order form an estimate of the energy spectrum, one thus
computes (4), in combination of either (8) or (9), over the
range of frequencies and dampings of interest. Reminiscent
to the Capon and APES formulation derived in [13, 14] (see
also [12]), this then allows the dCapon and dAPES estimates
to be formed as

ˆ

�

C
!,� = �N,�

�

�

�

�

�

'

G
!,�

'

R
!,�

�

�

�

�

�

2

(14)

ˆ

�

A
!,� =

�N,�

�

�

�

'

G
!,�

�

�

�

2

�

�

�

�

⇣

1� �L,�'
H
!,�

⌘

'

R
!,� + �L,�

�

�

�

'

G
!,�

�

�

�

2
�

�

�

�

2 (15)

where

'

R
!,� , s⇤M (!,�)

ˆR�1
x sM (!,�) (16)

'

G
!,� , z�!,�

�L,�
s⇤M (!,�)

ˆGxsL(�!,�) (17)

'

H
!,� , e

�2�

�

2
L,�

s⇤L(!,�)
ˆHxsL(!,�) (18)

with

ˆGx , ˆR�1
x

ˆX (19)
ˆHx , ˆX⇤

ˆGx (20)

and where ˆX denotes the Hankel-structured data matrix

ˆX =

⇥

xM (1) . . . xM (L)

⇤

(21)

Clearly, should one instead wish to form an estimate of the
amplitude spectrum, |↵̂!,� |, this can be formed similarly.
Comparing the resulting expressions with the Capon and
APES estimators, formed only over frequencies, one may
note that the addition of the damping component prevents an
efficient implementation along the lines of [9–12], although
similar formulations may be used for each given damping
component. In the following, we proceed to examine how
these expressions may reformulated to also allow for an effi-
cient implementation over the damping dimension.

3. FAST POLYNOMIAL IMPLEMENTATION

In order to form fast implementations of (16)-(18), we refor-
mulate these expressions so that they have a close-to-Toeplitz
structure rather than their current close-to-Hankel structure,
using the Hankel to Toeplitz mapping

X , JM
ˆX (22)

with JM denoting the exchange matrix of appropriate dimen-
sions, implying that

ˆRx = JMRxJM (23)
ˆGx = JM Gx (24)
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Fig. 1. Computational complexity of the proposed dCapon
and dAPES implementations as compared to the implementa-
tions presented in [1, 11], for M = N/2� 1, K = 1024, and
D = 200.

as well as ˆHx = Hx, where

Rx = XX⇤ (25)
Gx = R�1

x X (26)
Hx = X⇤Gx (27)

which allows us to express (16)-(18) as

'

R
!,� = s⇤M (�!,��)R�1

x sM (�!,��)e�2�(M�1)

'

G
!,� =

z�!,�

�L,�
s⇤M (�!,��)GxsL(�!,�)e(��+|!)(M�1)

'

H
!,� =

e

�2�

�

2
L,�

s⇤L(!,�)HxsL(!,�)

Clearly, Rx is now a close-to-Toeplitz matrix, implying that
its inverse, R�1

x , as well as the associated matrices Gx and
Hx are also close-to-Toeplitz matrices, thereby enjoying GS
representations of the form [12]

R�1
x =

4
X

i=1

�iLM

�

tiM
�L⇤

M

�

tiM
�

(28)

Gx =

4
X

i=1

�iLM

�

tiM
�L⇤

L,M

�

vi
L

�

(29)

Hx =

4
X

i=1

�iLL

�

vi
L

�L⇤
L

�

vi
L

�

(30)

for a set of properly chosen vectors tiM and vi
L, and integers

�i 2 {�1, 1}, for i = 1, 2, 3, 4, with LM (y) denoting an
M ⇥M lower triangular Toeplitz matrix whose first column

Fig. 2. An illustration of the dAPES estimate for three
damped sinusoidal signals.

equals to y, such that

LM (y) =

2

6

6

6

6

4

y0 0 . . . 0

y1 y0
. . .

...
...

. . . . . .
...

yM�1 . . . y1 y0

3

7

7

7

7

5

(31)

where yk indicates the kth index in the (generic) M⇥1 vector
y, and with LL,M (y) denoting an L ⇥ M truncated version
of LL(y). Consider a trigonometric polynomial of the form

 !,�(yM ) , f⇤M (!,�)LM (yM )L⇤
M (yM ) fM (!,�) (32)

where

fM (!,�) ,
⇥

1 �e

|!
. . . �

M�1
e

|!(M�1)
⇤T (33)

This implies (34), given at the top of the following page, with
ZM denoting the M ⇥M down-shifting matrix, and where

yM (�) , yM � fM (0,�) (35)

allowing  !,� to be efficiently computed using the FFT as

 !,�(yM ) =

M�1
X

`=�M+1

c`(�)e
|!` (36)

where

[cM�1(�) cM�2(�) . . . c0(�)]
T
= LM (yM (�))uM (�)

(37)
with c�`(�) = c

⇤
` (�), and

uM (�) , conj

h

JMyM

i

� µµµM (�) (38)
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 !,�(xM ) =

M�1
X

=0

f⇤M (!,�)Z
MyM (Z

MyM )

⇤
fM (!,�) =

M�1
X

=0

�

2f⇤M (!, 0)Z
MyM (�) (Z

M yM (�))

⇤
fM (!, 0) (34)

where � denotes the Schur-Hadamard (element wise) prod-
uct, and with the kth element of µµµM (�) being computed as

[µµµM (�)]k =


X

`=0

�

2` (39)

Furthermore, consider a trigonometric polynomial of the form

⇠!,�(yM ,wL) , f⇤M (!,�)LM (yM )L⇤
L,M (wL) fL(!,�

�1
)

(40)
which, reminiscent to (34), may be expressed as (41), given
at the top of the following page, which implies that the coeffi-
cients of the trigonometric polynomial ⇠!,� can be computed
exactly as stated in Lemma 1 in [12], being applied on the
modified vectors yM (�) and wL(�

�1
), defined by (35) and

by
wL(�

�1
) , wL � fM (0,�

�1
) (42)

respectively. Exploiting these expressions, one may effi-
ciently compute (16)-(18) as

'

R
!,� = e

�2�(M�1)
4

X

i=1

�i �!,e� (t
i
M ) (43)

'

G
!,� =

z�!,�

�L,�

4
X

i=1

�i⇠�!,e� (t
i
M ,vi

L) (44)

'

H
!,� =

e

�2�

�

2
L,�

4
X

i=1

�i !,e�� (vi
L) (45)

where the vectors tiM and vi
L, as well as scalars �i, i =

1, 2, 3, 4, are estimated from the measurement x(n), for n =

1, . . . , N , by means of the fast generalized Levinson algo-
rithm, presented in [12], at a cost of O(M

2
)+O(N log2(N))

operations. With these, the coefficients of the trigonometric
polynomials  !,�(yM ) and ⇠!,�(yM ,wL), as defined in
(32) and (40), are estimated using the fast Toeplitz vector
multiplication method, contributing to an overall cost of
D · O(N log2(N)) operations, where D is the dimension
of the damping grid. With these, the polynomials in (43)-
(45) may then be evaluated on the unit circle at a cost of
D · O(K log2(K) operations, where K is the dimension of
the (equally spaced) frequency grid. Summarizing the above
computational complexity, the proposed fast implementations
of the dCapon and the dAPES estimates requires, approxi-
mately,

C

new
= O(M

2
) +D

h

O (N log2(N)) +O (K log2(K))

i

operations, which is considerably lower than the complexity
of the scheme suggested in [1], which exploits the efficient
scheme presented in [11] for the evaluation of the spectra for
each separate damping constant, requiring, approximately,

C

[12]
= O(M

2
) +D

h

O (MN log2(N)) +O (K log2(K))

i

operations.

4. NUMERICAL SIMULATIONS

The computational performance gain of the proposed (exact)
implementations is illustrated in Figure 1, where we exam-
ine the (theoretical) complexity of the proposed implemen-
tations as a function of the number of samples, N , using a
filter length of M = N/2� 1 taps, and evaluating the perfor-
mance over a frequency and damping grid having K = 1024

and D = 200 grid points, respectively, as compared with
the (theoretical) complexity of the implementations proposed
in [1], exploiting [11], clearly illustrating the dramatic com-
plexity gain, even for cases of quite limited data dimensions.
To make a simple illustration the performance of the esti-
mators, Figure 2 illustrates the dAPES estimate for a signal
consisting of three unit amplitude sinusoidal signals with (ab-
solute) frequencies and dampings (f1,�1) = (0.2,�0.01),
(f2,�2) = (0.3,�0.02), and (f3,�3) = (0.4,�0.03), re-
spectively. As seen in the figure, the 2-D spectrum clearly
separates the peaks in both the frequency and damping dimen-
sions, and, as expected, exhibits lower energy peaks for the
more damped sinusoids. Should one be interested in the am-
plitudes of the decaying components, this can easily be found
using the corresponding amplitude estimates, which will then
have peaks close to unity. The reader is referred to [1] for a
more detailed and thorough study of the performance of the
estimators.

5. CONCLUSIONS

In this work, we have introduced computationally efficient
exact implementations of the non-parametric damped Capon
(dCapon) and APES (dAPES) spectral estimators introduced
in [1]. The proposed estimators exploit efficient Gohberg-
Semencul style formulations for the required matrix products
and inverses, in combination with FFT-based fast trigonomet-
ric polynomial implementations of the nominator and denom-
inator polynomials of the estimators. Numerical simulations
illustrates the notable complexity gain of the proposed imple-
mentations.
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⇠!,�(yM ,wL) =

M�1
X

=0

f⇤M (!,�)Z
MyM (Z

LwL)
⇤
fL(!,�

�1
) =

M�1
X

=0

f⇤M (!, 0)Z
MyM (�)

�

Z
LwL(�

�1
)

�⇤
fL(!, 0) (41)
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