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ABSTRACT

Empirical mode decomposition (EMD) is a recently intro-
duced decomposition method for non-stationary time series.
The sum of the decomposed intrinsic mode functions (IMF)
can be used to reconstruct the original signal. However, if
the signal is corrupted by wideband additive noise, several
IMFs may contain mostly noise components. Hence, it is
a challenging study to determine which IMFs have informa-
tive oscillations or information free noise components. In this
study, hierarchical clustering based on instantaneous frequen-
cies (IF) of the IMFs obtained by the Hilbert-Huang Trans-
form (HHT) is used to denoise the signal. Mean value of
Euclidean distance similarity matrix is used as the threshold
to determine the noisy components. The proposed method is
tested on EEG signals corrupted by white Gaussian noise to
show the denoising performance of the proposed method.

Index Terms— Hilbert-Huang Transform, hierarchical
clustering, EEG denoising.

1. INTRODUCTION

Linear and non-linear filtering methods are widely studied
and applied to eliminate irrelevant components such as power
line interference and other corrupting noise before processing
biological signals. However, white noise interference cancel-
ing is a challenging task [1].

Linear filtering methods are commonly applied where the
signal and noise are stationary and their spectra are known
and non-overlapping [2]. A well known linear technique, the
Wiener filter can be applied for smoothing additive high fre-
quency artifacts under the assumption of wide sense station-
arity [3]. In order to process non-stationary signals, time-
frequency based approaches such as wavelet transform (WT)
and Gabor expansion are considered to be more appropriate.
As such, a threshold is applied to the resulting coefficients to
reconstruct the filtered signal [4] [5]. Even though it gives

∗This work was partially supported by The Research Fund of The Univer-
sity of Istanbul. Project numbers:14381 and 31474.

satisfactory time-frequency resolution, the trial and error ap-
proach for selecting the optimum wavelet function makes it
ineffective for denosing signals with white noise and impulses
of short duration [6]. Huang at al. has introduced the empir-
ical mode decomposition (EMD) as an alternative method to
analyze non-stationary signals [7]. EMD does not require any
basis function, i.e., it is a data driven, adaptive method. It
decomposes the signal into a few oscillations called intrin-
sic mode functions (IMF) which are derived from the sig-
nal. They are semi-orthogonal functions having fluctuant fre-
quency spectrum [8]. Hilbert-Huang transform (HHT) ob-
tains the instantaneous frequency (IF) of each IMF which is
an effective method to analyze IMFs in the frequency domain
[9]. However, it is still a challenging study to determine rel-
evant or irrelevant IMFs, which can be considers as the first
step for EMD based denoising. Wu and Huang [10] applied a
hypothesis test based method to determine the relevant infor-
mation level of the IMFs. However, it is reported to perform
poorly for low frequency components. Information theoreti-
cal based approaches such as relative entropy and mutual in-
formation are investigated to find irrelevant noisy oscillations
[11] [12].

Electroencephalography (EEG) signals are inclined to be
corrupted by environmental random noise due to recording
mechanism and interference from other sources. This may be
modeled as additive white Gaussian noise (AWGN) on EEG
signals. In this study, AWGN corrupted epileptic and normal
EEG signals are denoised by using the proposed HHT and
clustering based method. After computing instantaneous fre-
quencies (IFs) of IMFs, hierarchical clustering is applied to
determine a threshold based on the distance metric. IMFs be-
low the threshold are used to reconstruct a filtered version of
the given signal.

2. HILBERT-HUANG TRANSFORM

The combination of EMD [7] and Hilbert spectral analysis [9]
is known as HHT which represents a non-stationary signal in
the time-IF domain. Empirically, HHT is a superior tool for
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non-linear and non-stationary signal processing in the time-
frequency domain.

EMD algorithm decomposes a signal into IMFs without
the requirement of apriori basis function so that the sum of
IMFs equals to the original signal. Each IMF should satisfy
two criteria: First, the number of extrema and the number of
zero crossings must be equal or must differ by one at most.
Second, the mean of the envelopes determined by the local
maxima and minima should be zero. Consequently, fluctua-
tions of IMFs can be reduced [13]. The most important stage
of the EMD algorithm to find IMFs is called Sifting, which
involves the following steps [13]:

i) Find local maxima, Mi, i = 1, 2, · · · and minima,
mk, k = 1, 2, · · · in x(n).

ii) Compute the corresponding interpolated signalsM(n) =
fM (Mi, n), and m(n) = fm(mk, n). These are the
upper and lower envelopes of the signal.

iii) Let e(n) = (M(n) +m(n))/2.

iv) Substract e(n) from the signal: x(n) = x(n)− e(n).

v) Return to step (i) and stop when x(n) remains nearly
unchanged.

vi) After obtaining an IMF, ci(n), remove it from the sig-
nal x(n) = x(n) − ci(n) and return to step (i) if x(n)
is not constant or trend, r(n).

Thus, signals can be decomposed into number of IMFs with
different band limited spectra. The signal may be recon-
structed by the sum of IMFs described as follows;

s(n) =

M∑
i=1

ci(n) + r(n) (1)

where M is the total number of extracted IMFs and r(n) is
the final residue. Hilbert-Huang spectrum is defined as the
IFs of the decomposed IMFs. First, analytic versions of the
IMFs are computed using Hilbert Transform (HT) described
as follows [14]:

• Compute N -point one-sided discrete-time Fourier
transform (DTFT) Ci(m) of the N real data samples.

• Form the N -point one-sided discrete-time analytic sig-
nal

CAi (m) =


Ci(0) m = 0
2Ci(m) 1 ≤ m ≤ N

2 − 1
Ci(

N
2 ) m = N

2

0 N
2 + 1 ≤ m ≤ N − 1.

(2)

• Compute the complex-valued discrete-time analytic
representation of the IMFs using an N -point inverse
DTFT,

cAi (n) =
1

N

N−1∑
m=0

CAi (m) e2πmn/N (3)

Then, they can be written in polar form by

cAi (n) = Ai(n) e
θi(n) (4)

where Ai(n) and θi(n) are instantaneous amplitude (IA) and
phase of the ith IMF, which are computed by

Ai(n) =
√

Re{cAi (n)}2 + Im{cAi (n)}2 (5)

θi(n) = arctan
(

Im{cAi (n)}
Re{cAi (n)}

)
(6)

After unwrapping the θi(n), IF is estimated by taking the first
order difference. Thus, a discrete-time signal is represented
in terms of IFs and IAs of its IMFs.

3. HIERARCHICAL CLUSTERING

Hierarchical clustering is one of the methods of cluster anal-
ysis that aims to form a hierarchy of clusters. There are two
approaches to hierarchical clustering: Agglomerative is a bot-
tom up approach grouping small clusters into larger ones. Di-
visive is a top down approach splitting big clusters into small
ones [15]. In this section, we provide an overview of agglom-
erative clustering algorithm as follows:

i) Start with each point in a cluster of it.

ii) Until there is only one cluster
(a) Find the closest pair of clusters,
(b) Merge them.

iii) Return the tree of cluster-mergers.

However, this is not the same as how close two data are, or
how close two partitions are. Hence, one of the linkage meth-
ods, single-linkage [16] suggests that the distance between
two clusters, A and B as the minimum distance between their
members:

d(A,B) = min−→x ∈A,~y∈B
‖−→x −−→y ‖ (7)

The distance metric above may be Euclidean, Mahalanobis,
Cosine, Manhattan etc. Here, we use Euclidean distance as a
similarity metric among the IF spectra of IMFs:

di,j(IFi, IFj) = ||IFi(n)− IFj(n)|| (8)
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where ||.|| denotes the Euclidean norm, i = 1, 2, · · · ,M − 1,
j = i+ 1, i+ 2, · · · ,M , and M is the total number of IMFs.
Therefore, similarity vector is obtained as follows:

D = [d12, d13, · · · , d1M , d23, d24, · · · , d2M , · · · , dM−1M ]
(9)

Finally, after single-linkage, dendrogram is obtained as a re-
sult of the clustering that illustrates the arrangement of the
clusters.

4. THE PROPOSED METHOD

We assume that several IMFs of a noisy signal may be irrele-
vant, information free oscillations. The first few IMFs include
mostly white noise components compared to others, in case
the signal is corrupted by AWGN. However, a reliable met-
ric to determine which IMFs contain mostly noise is a vital
problem in a reconstruction algorithm.

In our method, a threshold score is determined as a result
of hierarchical clustering. After applying EMD to AWGN
corrupted signal, IF spectra of IMFs are obtained by HHT
and they are clustered. An adaptive threshold is computed
based on the distance metric used in clustering. The steps of
the proposed methods are described below:

a) Let x(n) = s(n) + w(n) be observed noisy signal
where x(n) and w(n) denote the desired signal and the
AWGN respectively.

b) Decompose x(n) into ci(n), i = 1, 2, · · · ,M , where
M is the total number of IMFs.

c) Apply HHT to ci(n) to obtain IF spectra, IFi(n).

d) Compute Euclidean distance among the IFi(n),
dij(IFi, IFj) = ||IFi(n)− IFj(n)||,
where i = 1, 2, · · · ,M − 1 and j = 1, 2, · · · ,M .

e) Obtain similarity vector, D.

f) Normalize D in the range of [0.1, 1].

g) Determine a threshold as the mean value of D,

γ = 1
L

L∑
i=1

Di, where L = M(M − 1)/2 denotes the

length of D.

h) Apply single-linkage and plot dendrogram to visualize
results.

i) Then reconstruct a denoised signal, ŝ(n) as:
ŝ(n) =

∑
j

cj(n), j = {i|Di < γ}.

Thus, irrelevant or mostly white noise IMFs can be excluded
in the reconstruction of the signal. The proposed method is
tested on single channel EEG signals corrupted by different
level of AWGN to check its denoising performance.

5. RESULTS

Single channel normal and epileptic EEG recordings [17]
with 200 Hz sampling frequency are used to test the proposed
method. They are decomposed into IMFs by applying the
EMD algorithm introduced by Rato et al. [13]. The record-
ings and their IMFs for 0.5 sec. epoch time are shown in
Fig. 1. Normal and epileptic EEG signals are filtered by

Fig. 1. Original EEG recordings and IMFs.

necessary low pass filter (fc = 40Hz) to eliminate artifacts.
Additionally, IF spectra after applying HHT are given in Fig.
2. As shown in Figs. 1 and 2, five IMFs are decomposed for

Fig. 2. Hilbert-Huang Transforms of EEG signals.

normal and epileptic EEG signals. EEG signals with 20 dB
signal-to-noise ratio (SNR) are analyzed by the above proce-
dure to test the proposed method. The dendrogram based on
the normalized similarity vector and the calculated threshold
are shown in Fig. 3. An extra IMF is resulted for 20 dB
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Fig. 3. The dendrogram and threshold for normal EEG
recording with 20 dB SNR.

noise added normal EEG signal, and the first IMF is due to
the AWGN component shown in Fig. 4 which is detected
by the threshold. Therefore, the first IMF which has higher
distance score than the computed threshold is eliminated to
reconstruct the filtered signal. Then the same procedure is

Fig. 4. The three IMFs of the normal EEG with 20 dB SNR.

applied to epileptic EEG, and the result is shown in Figure
5. Reliability of the proposed method is tested for normal

Fig. 5. The dendrogram and threshold for epileptic EEG
recording. with 20 dB SNR.

and epileptic EEG signals with 0 dB SNR. The results of the
thresholding method for normal and epileptic EEG are shown
in Figs. 6 and 7. In case two IMFs are mostly noisy os-
cillations, they are identified successfully, which have higher
distance score than the threshold. First 4 IMFs of the epilep-
tic EEG with 0 dB SNR are given in Fig. 8 to illustrate this
point. It is clear that the first two IMFs are noisy components,
which should be excluded in reconstruction. Finally, the re-

Fig. 6. The dendrogram and threshold for normal EEG
recording with 0 dB SNR.

Fig. 7. The dendrogram and threshold for epileptic EEG
recording with 0 dB SNR.

construction of EEG signals with 20 and 0 dB SNR using the
IMFs with lower distance value than the threshold is given in
Figs. 9 and 10. After denoising the signals with 0 dB and
20 dB AWGN, the SNR values are computed as 12.05 dB
27.34 dB for normal, 7.58 dB and 20.08 for epileptic EEG
respectively. Hence, the identification of white noise dom-
inant IMFs using the proposed method based on HHT and
hierarchical clustering can be used for denoising. However,
interference of AWGN into informative IMFs still remains as
an artifact due to nature of the EMD algorithm.

6. CONCLUSION

In this study, additive white Gaussian noise (AWGN) removal
from normal and epileptic EEG signals is investigated by us-
ing the EMD and hierarchical clustering. Instantaneous fre-
quency (IF) spectra of intrinsic mode functions (IMF) which
is called Hilbert-Huang spectrum have distinguishing proper-
ties between noisy and noise free oscillations. Mean value of
the Euclidean distanced similarity vector is used as a thresh-
old to identify the AWGN components. The IMF with higher
distance then the threshold on single-linkage based dendro-
gram is excluded in the reconstruction. Therefore, IMFs in-
cluding mostly white noise are successfully determined using
the proposed method and a filtered version of the given signal
is reconstructed.
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Fig. 8. The four IMFs of the epileptic signal with 0 dB SNR.

Fig. 9. Reconstruction of EEG signals with 20 dB AWGN.
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