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ABSTRACT

It is shown that jitter is fundamentally inherent to the break-
points of discrete sparse piecewise-constant signals mea-
sured in noise. No one estimator, even ideal, is able to pro-
vide the jitter-free breakpoints detection with unit probabil-
ity. Even so, the jitter distribution in such signals was un-
known so far. We have shown that for noise having white
properties the jitter can be approximated with the discrete
skew Laplace distribution irrespective of the segmental dis-
tributions. The theory was tested in Gaussian and heavy-
tailed Cauchy noise environments and good correspondence
was demonstrated.

1. INTRODUCTION

A great deal of applied problems meet a necessity of re-
covering different kinds of piecewise-constant signals from
noisy measurements. Such a signal is sparse with a limited
number of breakpoints between constant segmental levels.
In applications, it occurs both intentionally, by modulation,
and naturally, by undergoing processes. One classical exam-
ple is the compound Poisson process [1] and another one is
the Haar-based signal forming and representation. We find
piecewise constant signals in digital message transmission,
power line communications [2], genome copy number vari-
ations [3], and Markov chains. Images are also often com-
posed of pieces having different colors with sharp edges.

To provide denoising while preserving edges in
piecewise-smooth signals, several approaches have been de-
veloped during decades. A considerable interest has re-
ceived nonlinear wavelet-based processing with threshold-
ing [4-6] highly efficient in Gaussian noise. For heavy-
tailed and Gaussian with outliers noise environments the
nonlinear smoothers based on robust statistics were shown
to have better performance [7-10]. Referring to the fact
that time-variant linear structures are able to produce ef-
fects similar to the nonlinear ones, adaptive and time-variant
smoothers were suggested and investigated in [11-14]. Also,
the forward-backward (FB) filters and smoothers are used
with this aim in engineering practice [15, 16].

Any estimate of a piecewise-constant (stepwise) signal
measured in noise is accompanied with segmental errors and
jitter in the breakpoints locations. Estimates of the constant
segmental levels between the breakpoints are most accurately
provided by averaging and well studied. However, jitter in
the breakpoints still remains not well understood, although
some investigations clearly demonstrate its existence [17].
Note that jitter in piecewise smooth signals has another na-
ture than that in digital channels. Below we show that jitter
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Figure 1: An example of a sparse (two-segment) discrete
piecewise-constant signal measured in white Gaussian noise.

is fundamentally inherent to the breakpoints of piecewise-
constant signals measured in white noise and that it can be
represented approximately with the recently derived discrete
skew Laplace distribution [18] irrespective of the segmental
distributions.

2. JITTER PROBABILITY

A typical example of a sparse (two-segment) discrete
piecewise-constant signal measured in white Gaussian noise
is shown in Fig. 1. Here a constant signal changes from level
a; at point n; — 1 to level a;,; at point n; that is called the
breakpoint. Perturbed by noise, location of n; is not clearly
determined owing to commonly large segmental variances
of and 67,,. As an example, the segmental noise probabil-
ity density functions (pdfs) p;(x) and p;y;(x) are shown in
Fig. 1 for 67 > G/2+1~ Let us add that p;(x) and p;,1(y) cross
each other in two points, o; and f;, provided 6/ # o7, |.

Now consider N points neighboring to n; in each seg-
ment. We thus may assign an event A 2 A ; meaning that
measurement at point n; — N < j < n; belongs to the /th seg-
ment. Another event B; £ B ; means that measurement at
n < j <m+N-—1 belongs to the (I + 1)th segment. We
think that a measured value belongs to one segment if the
probability is larger than if it belongs to another segment.
For example, any measurement point in the interval between
1



a2 o and B £ B (Fig. 1) is supposed to belong to the
(14 1)th segment.

Following Fig. 1 and assuming different noise variances,
the events A;; and B;; can be specified as follows:
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B; is xj<a, o =07, 2
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The inverse events areAj =1-A;and Bj =1-B;.
Events A; and B; can be united into two product blocks

A:
B:

{Anl—NAnl—N+1 . -An[—l} ) (3)
{BnanlJrl H«B111+N71}- (4)

If A and B occur simultaneously, then jitter at n; will never
occur. However, there may be found some other events which
do not obligatorily lead to jitter. We ignore such events and
define approximately the probability P(AB) of the jitter-free
breakpoint as

P(AB) =P(Ay, N -Ay_1Bu ... Buin-1). (5

The inverse event P(AB) = 1 — P(AB) can thus be called
the jitter probability.

In white Gaussian noise, all the events are independent
and (5) can be rewritten as

P(AB)=P"(A)PY(B), (6)

where, following (3) and (4), the probabilities P(A) and P(B)
can be specified as, respectively,
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B
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B 5 5
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o

where p;(x) is any probability density function (pdf) de-
scending monotonously to the left and to the right from the
peak-value.

Let us now think that jitter occurs at a point n; + k,
0 < k < N, and assign two additional blocks of events A =
{AnlfN .. 'An,—l—k} and Bk = {Bn/+k .. ~Bn,+N71}- The
probability P, £ P(AA,,_...An—1B) that jitter occurs at
the kth point to the left from n; (left jitter) and the probabil-
ity P £ P(ABy,+1...By k1 By) thatjitter occurs at the kth

point to the right from n; (right jitter) can thus be written as,
respectively,

PMH(A)[1— P(A)]*P(B), ©)
PN(A)[1—P(B) P (B). (10)

P =
+
P =

By normalizing (9) and (10) with (6), we arrive at a func-
tion that turns out to be independent on N:

Pl (A)—1F |, k>0, (lft)
fk) = 1 , k=0, (11)
[P~'(B)—1F , k>0. (right)

Further normalization of f(k) to have a unit area leads to the
pdf p(k) = %f(k), where ¢ is the sum of the values of f(k)
for all &,

N—yoo

o=1+ Y [p*(k)+ %K), (12)
k=1

where @4 (k) = [P~!(A) — 1]F and @®(k) = [P~!(B) — 1]*.
Now observe that, in our approximation neglecting some
undefined probabilities, function f(k) converges with k only
if 0.5 < P = {P(A),P(B)} < 1. Otherwise, if P < 0.5, the
sum ¢ is infinite, f(k) cannot be transformed to p(k), and
the breakpoint cannot be detected. Considering the case of
0.5 < P={P(A),P(B)} < 1, we conclude that InP < 0,
In(1—P) <0, and In(1 — P) < InP. Next, using a standard

relation Y k= where x < 1, and after little transfor-

k=1 "711_1’
mations we bring (12) to
P(A)+P(B)—1
[1-2P(A)][1-2P(B)] "

o=

13)

The approximate jitter pdf p(k) can finally be found to
be

L[ P A) -1k k<0,
plk) = — 1 , k=0, (14)
ol B -1, k>0,

where ¢ is specified by (13) and 0.5 < P(A),P(B) < 1. Ac-
cordingly, (14) can be used to find the jitter probability.

If we now substitute g = P~ ' (A) —1andd = P~!(B) — 1,
find P(A) = 1/(1+¢q) and P(B) = 1/(1 +d), and provide
the transformations, we arrive at a conclusion that (14) is the
discrete skew Laplace pdf recently derived in [18]:

(1—d)(1—61){ d*, k=0,

P === W k2o (9

where d = € (0,1) and g = e~ € (0,1) and in which
Kk and v > O still need to be connected to (14).

Note that both (14) and (15) have peak-values at zero,
k = 0. To move these distribution to the breakpoint n;, just
substitute k with k — n; and change k around n;.

Now, in order to find the variables k¥ and v used in
(15) in terms of (14), we consider (14) and (15) at k = —1,
k=0, and k = 1. By equating (14) and (15), we first obtain

1-d)(1-¢g)d _ 1 1-P(B 1-d)(1— 1 1-P(A
( ])jdqq) =5 P(é)) for k=1 and ( ll(dq‘ﬁq:$ P(A()>
for k = —1 that gives us

v= (16)



where
y_ PA-PB)
P(B)[1—P(A)]
For k = 0, we have (171‘17)‘5;7) = % and transform it to the
equation

> ¢(1+u) 1-9¢
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which proper solution is

xg(mm(l HW) a7

n=0,

1+¢) O2(1+u)?

2
_ K7
and which x=pu 1-+* gives us

Inx
K=4{l—F. (18)
In(x/n)
By combining (16) with (18), we also get a simpler form for

v, namely v = — .

Note that so far we made no assumptions about the dis-
tribution of the segmental white noise. That means that the
discrete skew Laplace distribution (15) approximately char-
acterizes jitter in the breakpoints of piecewise-constant sig-

nals measured in white noise having any distribution.

2.1 White Gaussian Noise

Let us now suppose that the segmental noise is white Gaus-
sian. We thus introduce the segmental signal-to-noise ratios
(SNRs) [19]

A2 A2
—_ A+
’y - 2 'J/ - 2 )
O; 0/

where A= A; = a;, | —ay, substitute the Gaussian pdf p;(x) =

1 _—q)? : _
X to (7) and (8), provide the transfor:

exp 2
\/2mo? 20;

mations, and rewrite (7) and (8) as

1+ Slerf(gP) —erf(g®)] , v <v",

P(A) = Lerfe(g%) .Yy =7t (19)
erf(gP) —erf(g®)]  , v >7",
%[erf(ho‘) ferf(hﬁ)] , Y <yt

P(B) = 1 — Jerfc(h®) .y =7, (20
1+ S[erf(h®) —erf(RP)] , vy~ >,

_B-A v _ oA /1 _ B ./ —
where g8 = B\ /17, g% = S5/ 18 = T e =

ﬁ\/@ , erf(x) is the error function, erfc(x) is the comple-
mentary error function, and

_ay —aay” 1
“h = r—vr  y -7
2 Y
Xy (ar—ai)y vH+28%(y —7H)In prey
21

10— ; =
i <
10" A >
= ~

107 = & : —- Cauchy =
kS e & i —
1" \)—cr
> -3| s
< 10 g‘lé Gaussian : :
S Z t 0

10

Yy =2.78 y'=6.25 §
10-5 N\
10°

Figure 2: The jitter skew Laplace pdf (dashed) for different seg-
mental SNRs; k = 0 corresponds to the actual breakpoint. Test
measurements depicted with o and [J correspond to Gaussian and
Cauchy noise environments, respectively. Discrepancies with large
k are caused by the approximation.

ify #y". Fory =y", seta=A/2and = +oo.

The skew Laplace pdf (15) is shown in Fig. 2 for y~ =
2.78 and y" = 6.25. It predicts that jitter may occur at 5
points (three to the left and two to the right from k = 0) for the
pdf level of 0.01. In order to verify (15) experimentally, we
have simulated a piecewise-constant signal in white Gaussian
noise with o1 = 0.6 and 0, = 0.4. To realize how (15) serves
for non-Gaussian processes, we also simulated this signal in
heavy-tailed Cauchy noise with the scale factors s; = 0.2 and
52 =0.13.

As can be seen, (15) serves well when noise is white
Gaussian. In the Cauchy noise environment there is a good
correspondence around k = 0. However, simulations reveal
some tails beyond k = 0 that requires further investigations.

The jitter probability P.(y~,y") can now be found uti-
lizing (15). Because a step is unity in discrete k, the jitter
probability P(y~,y") is given by

Py, ) = plkld(y; 7)) a(y 7)) (22)

Figure 3 sketches (22) for small and large equal SNRs
" = 7». Here, we also show the probability of the jitter-free
breakpoint detection (dashed) along with some preliminary
simulations. As can be seen, (22) fits measurements and we
may continue on with some analysis:

e When the SNRs are extremely small, the total jitter prob-
ability Py(y~,7") = P(AB) defined by (2) is almost
unity. Herewith the probability of the jitter-free break-
point detection (dashed) and the jitter probabilities at any
other point naturally tend toward ﬁ (see that the relevant
curves merge when Y~ and y" tend toward zero).

e With an increase in the SNRs, the probability of the jitter-
free breakpoint detection naturally becomes larger and
finally reaches unity when ¥y~ = y© — oo. On the other
hand, the jitter probability at the kth point initially in-
creases, then it reachs a maximum, and thereafter de-
creases to zero when Y~ =y — oo,

o It follows from Fig. 3 that the maximum jitter probability
for k = 1 corresponds to about unit SNRs.
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Figure 3: Total jitter probability Pj(y~,y") and probabilities
P.(y~,y") of the right jitter at k = 1, k = 2, and k = 3 for equal
SNRs in the segments. The probability of the jitter-free breakpoint
detection is dashed.

3. ESTIMATION OF BREAKPOINT LOCATION

The purpose of this section is to verify that jitter in the
breakpoints exists fundamentally and depends strongly on
the neighboring points as suggested by (14). Using (15), the
jitter probability can be predicted for each k if the segmental
variances 67 and 67 are known along with A = a;, | —a; (see
Fig. 1). If to assume an ideal ML estimator, then the jitter
probability (22) will characterize its output. Note that opti-
mal and robust estimators do not add essential errors to the
estimation of the breakpoint locations. Therefore, (12) may
serve for real estimators in the lower bound sense. We have
verified this statement at the early stage using the forward-
backward smoother [16] and the averaging smoother [12].

3.1 Maximum Likelihood Estimation

To estimate the breakpoint locations shown in Fig. 2, Fig.
3, and below, the estimate 7; was found using the maximum
likelihood (ML) estimator implying known segmental a; =
2 and a;y; = 1. We suppose that the measurement vector
y € %" is an additive sum of a signal vector x(n;) € #* and
white noise vector v € %L We then find /; by minimizing the
square .%»-norm as

. e N
A= argAmm<2||y—x(nl)|%>, (23)

n

Subjectton; — N < a; <n;+N

where N is some reasonable number of points around #;.

We now §enerate a piecewise-constant signal (Fig. 1)
with (712 = 05 = 0.25 and A = 1 that corresponds to Y~ =
YT = 4. Next, we change a location of the candidate break-
point in the test signal with N = 5; that is, we handle the
candidate breakpoint from n = 46 to n = 56. By using (23),
we find 7; that is the ML estimate of the breakpoint location.

For the process simulated with y~ = y* = 4 the jit-
ter probability P, = P.(y~,y") is predicted by (22) to be
Py=68.3%, P, =12.9%, P, =2.4%, and P; = 0.46%. Figure

4 sketches measurements and the estimates of the breakpoint
location. It follows that an actual (jitter-free) breakpoint (Fig.
4a) is detected with Py = 68.3% and we notice that this prob-
ability is not large. We also give an example of a possible
although quite rare ambiguity (Fig. 4b). In this case, the
breakpoint is estimated to be located either at k = —3 with
P_3=0.46% or at k =1 with P| = 12.9%.

Let us consider another example. Figure 5 gives sev-
eral simulated examples of the genome copy number varia-
tions (CNVs) [20] with different realizations of the segmen-
tal white Gaussian noise. The case (a) is ideal to mean that
with such locations of the measured points the estimate of
the breakpoint i; will always be jitter-free. If some points
left-neighboring to i; have happen to lie below the threshold
(dashed), then the estimate will be found to the left of i;; four
points to the left in the case (b) represent the left jitter. If
some right-neighboring points lie below the threshold, then
the estimate will be found to the right of i;; two points to the
left in case (c) represent the right jitter. Also, there may be
observed ambiguities as in case (d) when the estimator gives
two or more possible locations of the same breakpoint. The
latter case is akin to that shown in Fig. 4b. Practical applica-
tions of the jitter distribution derived are discussed in [21].

4. CONCLUSIONS

Jitter in the breakpoints is fundamentally inherent to sparse
piecewise-constant signals measured in noise and is a strong
limiter of accuracy with small segmental SNRs. In spite of
this, the jitter distribution for such signals was unknown so
far. We have derived and verified an approximate jitter dis-
tribution for signals measured in additive noise with white
properties. We have also shown that this distribution is sub-
ject to the discrete skew Laplace law irrespective of the seg-
mental distributions. An important applied significance of
the jitter distribution derived resides in the fact that it allows
forming the estimate upper and lower bounds. Such bounds
are required in bioinformatics and other related fields imply-
ing measurements in large noise.

The jitter probability derived corresponds to the ideal ML
estimator implying known segmental levels. It can also be
used to characterize errors in real estimators in the lower
bound sense. Simulations have confirmed the theory. The
discrete Laplace distribution was shown to serve well around
the breakpoints in white Gaussian noise environment, al-
though some tails were revealed. We associate such tails
with some unspecified and therefore neglected probabilities.
Effect of the segmental noise distributions on the jitter prob-
ability and some critical applications are currently under in-
vestigation.
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