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ABSTRACT all the elements are operating at the same power level is de-

In phased array antennas, by varying the complex elemeﬁ{redj . ) )

weights beam patterns with desired shapes can be syntiesize Since the beam pattern is a non-linear function of the el-
and/or steered to desired directions. These complex weighfment phases, there is no previously proposed method for
can be implemented by using amplitude controllers and phag¥PProaching the problem from the convex optimization per-
shifters at the system level. Since controlling the phasanof SPective. Generally, ant colony based optimization method
RF signal is much easier than controlling its power, many sys(Particle swarm optimization, genetic algorithm, vs.) ased
tems do not have an individual amplitude controller for eacH© Minimize a certain cost function of element phases [2, 3].
element. Hence, beam shaping and steering are to be achieJ¥al! insertion to the undesired spatial directions by vagyi

by varying only the element phases. In this work, a new ap€lément phases are studied in [4, 5, 6, 7]. An iterative miétho
proach is proposed for phase-only beam synthesis probleri@sed on generalized projections is proposed in [8], riesult

In this approach, the phase-only beam synthesis is foreilat I @ cOmmon _ampl_ltud(_e and various phases distributions for
as a non-convex quadratically constrained quadratic probl different steering directions.

(QCQP). Then, it is relaxed to a convex semidefinite prob- In this work, different from the previous approaches,
lem (SDP), which generally provides an undesired high rankve first constructed a non-convex quadratically constraint
solution. An iterative technique is developed to obtainrkra quadratic problem (QCQP) to model the problem. Then, we
1 solution to the relaxed convex SDP. Conducted experimentslaxed it to a convex semidefinite problem (SDP), which can
show that, proposed method can successfully synthesire bede solved at the global optimum point in polynomial time.
shapes with desired characteristics and steering direchy ~ Although the resulting SDP is convex, its optimal solution
using only the element phases. is generally not a rank-1 matrix [9]. To achieve a rank-1
solution, we propose a novel iterative method, where in each
Index Terms— phased array antenna, beam pattern . » .

. . . .. Step a SDP with additional convex constraints are solved. We
quadratically constraint quadratic problem, semidefinite . . . i
problem, convex relaxation show that, after a few iterations, the _optlmal solution af th

constructed SDP has very fast decaying singular values, con
verging to a rank-1 solution. Conducted experiments show
1. INTRODUCTION that, proposed method can successfully design beam pattern

. o with desired characteristics and steering directions liygus
Phased array antennas are used in many applications such@gy element phases.

airport surveillance, missile detection and tracking, meti
resonance imaging, etc., because of their electronic sognn
capabilities [1]. Operating frequency and positions ofdhe

In Section-2, mathematical definition of the problem is
given. In Section-3, proposed method is detailed. Section-

is reserved for experimental results. Concluding remar&s a

ra);telemgnts d(elfme tg_?f mal? char?cterlst_mﬁt Oft thtﬁ anten ffovided in Section-5. Through out the paper, bold characte
pattern. By applying ditterent complex weignts 10 Ihe array, ; yenote vectors for minuscules and matrices for capital

elements, the beam pattern can be steered to different d_|re(:_)T will denote the transposition operation ajdl will de-
tions. Moreover, its shape can also be modified, i.e., sidex :

) . ote thel., norm of its argument.
lobe levels can be suppressed, mainlobe beamwidht can Be
reduced, etc. These complex weights are implemented as
amplitude controllers and phase shifters at the systent. leve
Since controlling the phase of an RF signal is much easier 2. PROBLEM DEFINITION
than controlling its power, many systems do not have an in-
dividual amplitude controller for each element. Hencenbea Let p,,, n = 1,..., N denote the positions of antenna ele-
synthesis by only varying the element phases assuming thatents, where,, = [pn.z,Pn.y, Pn.-). . The beam pattern is



given by
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wherev, (0, 7) = exp{j2=pZLa}. The directional cosines is
defined as = [sin 6 cos ¢, sin 0 sin ¢, cos §] 7, \ is the wave-
length of transmission and,,,n = 1, ..., N are the complex
antenna weights. By changing the weights, antenna beam c
be steered to different directions, its sidelobe levelsinma
lobe power and beam width can be controlled. For phase
only beam synthesis problem, all the antenna weights ar
constrained to have the same magnitude. Hence, phase-or
beam synthesis problem can be described by the following
feasibility problem:
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finday,...,an _ _ o _ _
S B0y, dm)|2 > 6 F|g. 1. Design cor_wstramts in (2P, andds_ define the min-
mermil = imum allowed mainlobe power and maximum allowed side-
|B(0s,1o, s,1)|> < 65, VE=1,..., K, lobe power, respectively(d,,,, ,,,) is the steering direction.
lom|? = 8, Yn=1,..., N, Ezs,k,%k),k =12 .,K déefifne thr:a sir:jelr?be conitrainrt]s.
m.h, @moh), b = 1,2, .., H define the ‘highest peak at the
|B(Om, &) > > | B0, d,n)|*s VR =1, ”'7H'(2) steering dir)ection’ constraint (last constraint in (2)).

Here, (0., ¢m) is the steering directioni,,, is the allowed  consiraints. Hence, the feasible set of (3) is guaranteed to
minimum power level at the steering directiGly ., ¢s.x). k = pe non-empty for reasonable choicesigf J5 ands,,. If the

1,..., K are the sidel_obe direc'gions for Whi(;h the maXimumfeasibiIity problem in (2) has a solution, then it would also
allowed power level ig; andd,, is the operating power level 5, optimal solution for (3).

of the all antenna elements. The last constraint is to force The optimization problem in (3) has dimensidhwhere

the power pattern to have its highest peak at the steeringe optimization variables are complex numbers. It camequi

direction, which is critical especially for direction fim@j ap-  gjenly be formulated aszV dimensional optimization prob-
plications. In Fig.1, these constraints are shown. The pow8ems in real variables:

pattern given in this figure belongs to a uniform linear array
with 21 elements, where the antenna weights are chosen asmin — 873

an = v5(0m,dm) to maximize the power at the steering PER*"

direction. The feasible set for constraints in (2) is gelhera st.B8'V,, VI3 >4,

empty. To ensure a non-empty feasible set, we transform the BTV VT, 8<6, Vk=1,... K
weight design problem in (2) to the following optimization 85 T ek =T U

problem: BTWIW,3 <4, Yn=1,..,N,

max ||alf? BT (Va VI =V, w VI VB> ¢ Vh=1,.., H,

aeCN (4)
st |afv,|? > 0m, R} RV} ST

« Vit —S1Vi, .
|(XTV57k|2 < 55, Vk = 1,..., K, Where/@ = |:C\\Y{Oé}j| y Vi = [%{Vﬁ}, %{VZ;} :|,Vs,k =
lan|? < 6py Yn=1,..., N, P%{V;k}’ —%{x;sTk}] V. . — [%{v%yh}, —%{\;ﬁh}]

1aTvl? > [@Tvimn? V=1, H, 3) StVerd, Rvgd TSt ®vat

W,, is an2 x 2N matrix composed of all zeros except
where v, = [U1(0m, dm)s V2 (Oms dm)s s UN Oy D)7 W,(1,n) = 1andW, (2, N + n) = 1, ande is a positive
Verk = [01(0sk; Psk),v2(0s ki, Bskc)s -y vn(Os ik, dsi)]T,  NUMber very close to zero. Note that the maximization in (3)
Vi = [01Om. s Gmn)s V2 (Ot Gty - ON (O, & )] T IS CONVerted to a minimization in (4).
anda = [a1, a9, ..,ay]”. In this formulation, sum of the For notational simplicity, we further define the following
energies of antenna weights is to be maximized, sidelobe afgatricesA = V,, V[, By = V,, V], C, = WI'W,,
mainlobe constraints of (2) are preserved aaticonstraints D, = V,,VL —V,,, VI . and rewrite (4) as the follow-

m,

on the energy of the antenna weights are replaced with * ing quadratically constrained quadratic problem (QCQR) wi



non-convex cost function and non-convex constraints, whic Algorithm 1 Iterative semidefinite relaxations with rank re-
can not be solved at the global optimum point in polynomiafinement:

time:
. T
mimn —
S, B B
st.8TAB > 6,,,

B'B.B < b, Vk=1,.. K,
prc,.B <6, ¥n=1,..,N,

B'DyB >¢, Vh=1,.. H. (5)

In the next section proposed method for solving the optimiza 8

tion problem in (5) will be detailed.

3. PROPOSED METHOD: ITERATIVE
SEMIDEFINITE RELAXATIONS WITH RANK
REFINEMENT

Since the matrices in B\, By, k = 1,..., K, C,,n =
1,....,N andDy,h = 1, ..., H are all symmetric, the QCQP
in (5) can be equivalently written as:

Akl Ly
st.Tr{AA} > 0.,
Tr{BiA} < és, Vk=1,.., K,
Tr{C,A} <§,, Vn=1,...,N,
Tr{D,A} >¢, Vh=1,..., H,
A is symetric and positive-semidefinjte
rank(A) = 1. (6)

Note that the optimization variable in (6) is a matix €

R2V>2N if g, is an optimal solution for (5), thef,, 3,

is an optimal solution for (6). However, (6) is still an NP dar

Tr{—A}

%lnitializations

1 < 0.

G=1

cr(n) = 1.

: Find A}, by solving (7).

: Apply SVD to Azpt and find its singular values! >
o > .. > ob and the corresponding left singular vec-
torSuﬁ,ué, ..,uéN.

78 = Voiul.

Computer (i) by using (11).

9: while ¢ < Ny, andr(i) > v do

1:

o uh wWwN

10:  Attach
(u;c)TA(u;c)T < Clﬁ Ziﬁl Uiz Vk = 2,3,..,2N
constraints to (7) and resolve it for findiayf;’,.

11:  Apply SVD to ALl and find its singular values
oitt > oftt > .. > o} and the corresponding left
singular vectors{ ™, uy ™, . ulil

12: ,Z‘]Hl = ai+1u§+l.

13:  Computer(i + 1) by using (11).

14 if Tr{—AL}'} < O, then

15: Git1 < HG-

16:  end if

170 i4+i+1

18: end while ,

19: Form complex weightsa’ = W3’

20: Normalize complex weights:a!, = 6,a}|a,|,n =

1,..,N.

for the QCQP in (5) can be constructed as

B = \/oru,. 9)

problem because of the rank constraint. By removing thgjowever, since optimal solutioA,,; of (7) is not rank-1,
rank constraint, it can be relaxed to a convex SDP which cafhe candidate solutiod can be an infeasible point or a non-

be solved efficiently in polynomial time [9]:

Tr{—A}

Aeg{rzl}vnxzzv
st.Tr{AA} > 6.,
Tr{BiA} <ds, Vk=1,.., K,
Tr{C,A} <, ¥n=1,...,N,
Tr{DnA} >, Vh=1,...,H,
A is symetric and positive-semidefinite (7)

However, optimal solutior\,,; of (7) is in general not rank-
1. Arank-1 approximate aA,,; can be formed as

T
Aopt =o1ujuy,

(8)

where); is the largest singular value &,,; andu, is the
corresponding left singular vector. Then a candidate goilut

optimal solution for (5). Since the QCQP in (5) and its equiv-
alent formulation in (7) are NP hard, the convex semidefinite
relaxation in (7) can not be forced to have a strictly rank-
1 optimal solution. However, it can iteratively be forced to
have optimal solution matrix with fast decaying singulak va
ues, hence approximating to a rank-1 solution. A@;t be
the optimal solution of (7) at thé" step of the iterative algo-
rithm. Assumer? > o} > ... > o}, are the singular values
andui,u, ..., ub, are the corresponding left singular vec-
tors of A’ .. Then, the followin®2 N — 1 convex quadratic

: opt*
constraints

2N
() "A(w)" < Gioe Y Vk=2,..2N  (10)
n=1

are attached to (7) and it is resolved. Hejgis the prede-
fined multiplier which we initially choose a§ = 1. If the
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Fig. 2. Uniform linear array withV = 21 elements

objective value-Tr{A.!!} is less than a predefined target
objective valug),, then the multiplier at iteration+ 1 is up-
dated as(;+1 < wp(;, where0 < p < 1 is the parameter
controlling the convergence rate of the algorithm. Afteitéin
number of iterationsV,.,- or the difference between energy
ratio of highest singular value ot , between two consecu-

- . . . Opt
tive iterations, i.e.,

2N 2N
7 7 i—1 i—1
01/ E Op — 01 / E On
n=1 n=1

is smaller than a certain thresholditerations are terminated
and the final solution of (5) is obtained as:

r(i) = (11)

~1

B = (12)

oiul.
Corresponding complex antenna weight vector is given by

a=wg, (13)
whereW is anN x 2N matrix composed of all zeros except
W(n,n) = 1, W(n,N +n) = j, Vn = 1,...,N. If the
value of the cost function in (7) evaluated at the optimal so
lution Aipt at the final iteration is greater thanV, then the
complex antenna weightg,, n = 1, ..., N do not satisfy the
power constraintin (2). Hence, weights are finally normeadiz
as:

&l = d,al J|ak|,n=1,...,N. (14)

In Algorithm-1, proposed iterative method is summarized. |
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Fig. 3. 6 = 0 degree cut of the power pattern for steering di-

rection(6, = 0, ¢, = 90)degree computed using the weights
found after iteratiori = 1 (solid) andi = 20(dashed-dotted)

the wavelength, and operating frequency is choself as
2GHz. As design constraints, we allow 5dB power reduction
in the steering directiory(, = 10log N2 — 5 dB) and require
23 dB sidelobe suppressiofi, (= 10log N2 — 23 dB). The
beamwidth measured at 23 dB below the maximum power
level (10 log N2) around the steering direction is constrained
to be less than 15 degree in azimuth. All the antenna elements
are required to operate at 1 Watt power levgl & 1). The
proposed method in Algorithm-1 is initialized with parame-
ters N = 20, v = 0.01 for steering direction in azimuth
¢p = 90 degree and in elevatiof), = 0 degree. For solving
the SDP in (6), we used CVX, a package for specifying and
solving convex programs [10].

After the first iteration, optimal value of the SDP in (7) is
found to be -21. However, since the provided solution is not
rank-1, the total power of the antenna elementii$||? = 8,

much smaller than 21. Hence the normalized coefficiérits
differ from the computed one&' much. In Fig.3, elevation

6 = 0 cut of the power pattern generated by using the nor-
malized complex weight vector after iteration= 1 (&) is
plotted (solid). As observed, resulting beam pattern do not
satisfy the design constraints. After 20 iterations, gtidl op-
timal value of the SDP in (7) is computed to be -21, the opti-
mal solution matrixA?2), is nearly rank-1 and the total power

the next section experimental results demonstrating the peof the antenna elements|ig*’||?> = 20.88. Hence the nor-

formance of the proposed method will be provided.

4. EXPERIMENTAL RESULTS

malized coefficientg?° are nearly the same wit&?’. The
resulting pattern after iteration 20 is plotted (dashettedt).
As observed, all the design constraints are satisfied.

In Fig.4, the ratio of the largest singular value of the opti-

To investigate the performance of the proposed method, w@al solution matrixA;,,, of (7) to the sum of all its singular

used a uniform linear array with' = 21 elements shown in
Fig.2. Element positions amg,, = [d(n — 1),0,0]7,n =
1,...,N. Inter element spacing i§ = 0.4\, where\ is

. . . . ; 2N i
values as a function of iteration numbet.e.,o} /> ", o},

is plotted. As observed, at iteratién= 20, the solution ma-
trix A* is nearly rank one, since the largest singular value



Then, the QCQP is relaxed to a convex SDP. Proposed it-
erations constrain the optimal solution of the SDP to have
fast decaying singular values. After a few iterations, ob-
tained solution is observed to be nearly rank-1. Conducted
experiments indicate that, proposed method has a certain co
vergence behaviour and can successfully design beam shapes
with desired characteristics by only using element phases.

(i)
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