
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

Spectral Efficient Optimization in OFDM Systems

with Wireless Information and Power Transfer

Derrick Wing Kwan Ng∗ and Robert Schober∗

∗Institute for Digital Communications, Universität Erlangen-Nürnberg, Germany

Abstract—This paper considers an orthogonal frequency divi-
sion multiplexing (OFDM) point-to-point wireless communication
system with simultaneous wireless information and power transfer.
We study a receiver which is able to harvest energy from
the desired signal, noise, and interference. In particular, we
consider a power splitting receiver which dynamically splits the
received power into two power streams for information decoding
and energy harvesting. We design power allocation algorithms
maximizing the spectral efficiency (bit/s/Hz) of data transmission.
In particular, the algorithm design is formulated as a nonconvex
optimization problem which takes into account the constraint
on the minimum power delivered to the receiver. The problem
is solved by using convex optimization techniques and a one-
dimensional search. The optimal power allocation algorithm serves
as a system benchmark scheme due to its high complexity. To strike
a balance between system performance and computational com-
plexity, we also propose two suboptimal algorithms which require
a low computational complexity. Simulation results demonstrate
the excellent performance of the proposed suboptimal algorithms.

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is a
promising air interface to fulfill the growing demands for a high
spectral efficiency, due to its flexibility in resource allocation
and high resistance against channel delay spread. Nevertheless,
in energy limited wireless networks, the lifetime of communi-
cation nodes remains the bottleneck in guaranteeing quality of
service (QoS) due to the constrained energy supply. Recently,
energy harvesting technology has received considerable interest
from both industry and academia. In particular, it has become
a viable solution for prolonging the lifetime of networks since
it provides a perpetual energy source and self-sustainability to
systems [1]-[6].

Traditionally, tides, solar, and wind are the major natural
renewable energy sources for energy harvesting. Unfortunately,
the availability of these energy sources is limited by climate or
location which may be problematic in indoor environments. On
the other hand, harvesting energy from ambient radio signals in
radio frequency (RF) introduces a new paradigm of energy man-
agement. More importantly, wireless energy harvesting provides
the possibility for simultaneous wireless information and power
transfer [3]-[6]. Nevertheless, this combination poses many new
challenges for the design of resource allocation algorithms
and receivers. In [3] and [4], the optimal tradeoff between
power and information transfer was studied for different system
settings. However, the receivers in [3] and [4] are assumed
to be able to decode information and extract power from the
same received signal, which cannot be achieved in practice
yet. Consequently, a power splitting receiver was proposed in
[5] and [6] for facilitating simultaneous information decoding
and energy harvesting. In particular, the authors in [6] studied
the resource allocation algorithm design for power splitting

This work was supported in part by the AvH Professorship Program of the
Alexander von Humboldt Foundation.

receivers of single carrier systems in ergodic fading channels.
Yet, the assumption of channel ergodicity may not be justified
in slow fading channels and the results in [6] may not be
applicable to multicarrier systems. Besides, an algorithm for
maximizing the spectral efficiency of a system with power
splitting receiver has not been reported in the literature so far.

Motivated by the aforementioned prior works, in this paper,
we first derive an optimal algorithm for maximizing the system
spectral efficiency in slow fading channels. Due to the associat-
ed high computational complexity of the optimal algorithm, we
propose two suboptimal resource allocation algorithms with low
computational complexity which are based on the coordinate
ascent method and convex optimization techniques.

II. SYSTEM MODEL

In this section, we present the adopted system model.

A. OFDM Channel Model

A point-to-point OFDM system consisting of one transmitter
and one receiver is considered. We assume that the receiver
is able to decode information and harvest energy from noise
and radio signals (desired signal and interference signal). All
transceivers are equipped with a single antenna, cf. Figure 1.
There are nF subcarriers sharing the system bandwidth of B
Hertz; each subcarrier has a bandwidth of W = B/nF Hertz.
The channel impulse response is assumed to be time invariant
(slow fading) and the channel gain is available at the transmitter
for resource allocation purpose. In addition, the receiver is
impaired by a co-channel interference signal emitted by an
unintended transmitter. The downlink received symbol at the
receiver on subcarrier i ∈ {1, . . . , nF } is given by

Yi =
√

PiglHiXi + Ii + Zs
i + Za

i , (1)

where Xi, Pi, and Hi are the transmitted symbol, the transmit-
ted power, and the multipath fading coefficient on subcarrier
i, respectively. l and g denote the path loss attenuation and
shadowing between the transmitter and receiver, respectively.
Zs
i is the signal processing noise on subcarrier i with zero mean

and variance σ2
zs . Zs

i is caused by quantization errors. Za
i is

the antenna noise on subcarrier i which is modeled as additive
white Gaussian noise (AWGN) with zero mean and variance
σ2
za . Ii is the received interference signal on subcarrier i with

zero mean and variance σ2
Ii

.

B. Hybrid Energy Harvesting and Information Receiver

In practice, the signal used for information decoding cannot
be reused for harvesting energy due to hardware limitations
[6]. As a result, we follow a similar approach as in [6] and
focus on a power splitting receiver to facilitate the concurrent
information decoding and energy harvesting. In particular, the
receiver splits the received signal into two power streams
carrying proportions of ρi and 1 − ρi of the total received
signal power before any active analog/digial signal processing is
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Fig. 1. Communication system model for simultaneous wireless information and power transfer.

performed, cf. Figure 1. Consequently, the two streams carrying
a fraction of ρi and 1 − ρi of the total received signal power
are used for decoding the information embedded in the signal
and energy harvesting, respectively1.

III. RESOURCE ALLOCATION

In this section, we first introduce the system capacity and
then formulate the corresponding resource allocation algorithm
design as optimization problem.

A. Instantaneous Channel Capacity

The channel capacity (maximum spectral efficiency) between
the transmitter and the receiver on subcarrier i with channel
bandwidth W is given by

Ci = W log2

(

1 + PiΓi

)

with (2)

Γi =
ρilg|Hi|

2

ρi(σ2
za + σ2

Ii
) + σ2

zs

, (3)

where PiΓi is the received signal-to-interference-plus-noise
ratio (SINR) on subcarrier i. Here, the interference and signal
processing noise are treated as AWGN for simplifying the al-
gorithm design. The system capacity is defined as the aggregate
number of bits delivered to the receiver over nF subcarriers and
is given by

U(P,ρ) =

nF
∑

i=1

Ci, (4)

where P = {Pi ≥ 0, ∀i} is the power allocation policy and
ρ = {0 ≤ ρi ≤ 1, ∀i} is the power splitting ratio policy.

B. Optimization Problem Formulation

The optimal resource allocation policy, {P∗, ρ∗}, can be
obtained by solving the following optimization problem:

max
P,ρ

U(P,ρ)

s.t. C1:

nF
∑

i=1

Pi|Hi|
2glη(1− ρi) ≥ P req

min,

C2:

nF
∑

i=1

Pi ≤ Pmax, C3: PC +

nF
∑

i=1

εPi ≤ PPG,

C4: ρi = ρj , ∀j 6= i, C5: Pi ≥ 0, ∀i,

C6: 0 ≤ ρi ≤ 1, ∀i. (5)

Here, P req
min in C1 is the minimum required power transfer to

the receiver which represents a QoS requirement. η denotes

1For the sake of presentation, we assume that the power splitting ratio can
be different across different subcarriers at the moment. The implementation
constraints on the power splitting will be taken into account when we introduce
the problem formulation for resource allocation algorithm design.

the energy harvesting efficiency of the receiver in converting
the received radio signal to electrical energy for storage. C2
constrains the maximum transmit power of the transmitter such
that it will not exceed Pmax. In practice, the value of Pmax

is related to hardware limitations of the transmitter and/or the
maximum spectrum mask specified by regulations. Variables
PC and ε in C3 are two constants account for the circuit
power consumption in the transmitter and the inefficiency of the
power amplifier, respectively. C3 indicates that the maximum
power supply from the power grid is PPG, cf. Figure 1, and
the total power consumption of the transmitter is controlled to
be less than PPG. C4 accounts for the hardware limitations
of the power splitting receiver. In particular, ρi is required to
be identical for all subcarriers. Otherwise, an analog adaptive
passive frequency selective power splitter is required at the
receiver which results in a high system complexity.

IV. SOLUTION OF THE OPTIMIZATION PROBLEM

Problem (5) belongs to the class of nonconvex optimization
problems. In particular, the power splitting ratio, ρi, couples
with the power allocation variable, Pi, in the SINR on each
subcarrier which makes (2) a nonconvex function with respect
to (w.r.t.) ρi and Pi. As a result, efficient convex optimization
techniques may not be applicable for obtaining the global
optimal solution. In the following, we propose an optimal
algorithm and two suboptimal algorithms for system capacity
maximization. The optimal resource allocation algorithm com-
prises a full search for ρi and convex optimization techniques.
Specifically, we maximize the system capacity w.r.t. the transmit
power for a given fixed ρi. Then, we repeat the procedure for
all possible values of ρi and record the corresponding achieved
system capacities2. At the end, we select that ρi as the optimal
power splitting ratio from all the trials which provides the
maximum system capacity. We note that although the optimal
resource allocation algorithm achieves the global optimal sys-
tem performance, it incurs a prohibitively high computational
complexity to the transmitter which is not desirable for time
constrained wireless communication services.

A. Optimal Algorithm

In this subsection, we solve the power allocation optimization
problem by convex optimization techniques for a given set of
ρ. To this end, we first obtain the Lagrangian function of (5):

L(λ, β, γ,P) (6)

=

nF
∑

i=1

Ci−λ
(

PC +

nF
∑

i=1

εPi − PPG

)

−β
(

nF
∑

i=1

Pi − Pmax

)

− γ
(

P req
min −

nF
∑

i=1

Pi|Hi|
2glη(1− ρi)

)

.

2In general, an nF dimensions full search is required to obtain the optimal
power splitting ratio. Yet, the search space can be reduced to a one-dimensional
search because of constraint C4.
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TABLE I
ITERATIVE RESOURCE ALLOCATION ALGORITHM.

Algorithm Suboptimal Resource Allocation 1

1: Initialization: Nmax = the maximum number of iterations
and ∆ = the maximum tolerance

2: Set iteration index n = 0 and initial resource allocation
policy {Pn,ρn}

3: repeat {Iteration}
4: For a given set of ρn, obtain an intermediate power

allocation P ′
n from (7)

5: For a given set of P ′
n, obtain an intermediate power

splitting ratio ρ′
n from (8)

6: if |U(P ′
n,ρ

′
n)− U(Pn,ρn)| < ∆ then

7: Convergence = true

8: return {P∗,ρ∗} = {P ′,ρ′
n}

9: else

10: Set {Pn,ρn} = {P ′
n,ρ

′
n} and n = n+ 1

11: Convergence = false

12: end if

13: until Convergence = true or n = Nmax

Here, γ, β, λ ≥ 0 are the Lagrange multipliers associated
with the transmitter power usage constraints C1, C2, and C3,
respectively. The non-negative transmit power constraint in C5
will be captured in the Karush-Kuhn-Tucker (KKT) conditions3

when we derive the optimal transmit power. We note that
constraints C4 and C6 do not contribute to the Lagrangian
function since they are independent of Pi. Yet, these constraints
will be considered in the full search over ρi.

Then, by using the KKT conditions for a fixed set of
Lagrange multipliers, the optimal power allocation on subcarrier
i is obtained as

P ∗
i =

[

W

ln(2)(α+ β − γ)
−

ρi(σ
2
za + σ2

Ii
) + σ2

zs

ρilg|Hi|2

]+

, ∀i, (7)

and
[

x
]+

= max{0, x}. It can be observed from (7) that the
power allocation solution is in the form of water-filling. Since
ρi is fixed in this optimization framework, the influence of ρi is
treated as part of the channel gain. Lagrange multiplier γ forces
the transmitter to allocate more power for transmission to fulfill
the minimum power transfer requirement P req

min. The optimal
Lagrange multipliers can be easily found via the gradient
method or off-the-shelf numerical solvers [7], [8].

In the following, we focus on the design of two suboptimal
power allocation algorithms with low computational complexity
compared to the optimal power allocation algorithm.

B. Suboptimal Algorithm 1

The problem formulation in (5) is concave w.r.t. P or ρ, but
not jointly concave w.r.t. both of them. As a result, an iterative
coordinate ascent method is proposed to obtain a locally optimal
solution [7] of (5) and the algorithm is summarized in Table
I. Pn and ρn denote the power allocation and power splitting
policy in the nth iteration, respectively. The overall algorithm is
implemented by a loop which solves two optimization problems
iteratively. In each iteration, we execute line 4 in Table I by first
keeping the power splitting ratio ρn fixed and optimizing Pn via
(7). Then in line 5, we keep the updated transmit power Pn fixed
and optimize ρn. The procedure iterates between line 4 and

3Since the problem is concave w.r.t. P for a given set of ρ and it satisfies
Slater’s constraint qualification, the KKT conditions provide necessary and
sufficient conditions for the optimal transmit power allocation.

line 5 until the algorithm converges or the maximum number
of iterations has been reached. We note that the convergence to
a local optimal solution is guaranteed [7].

For solving the power splitting ratio ρn with a fixed Pn in
line 5, we apply the KKT conditions for (5) which yields

ρ∗i =

[

Θi/2/(σ
2
za + σ2

Ii
)/(γ +

∑

j 6=i

∑

i ζi,j)
√

ln(2)
(

(σ2
za + σ2

Ii
) + |Hi|2lgPi

)

−
(σ2

za + σ2
Ii
)σ2

zs +
|Hi|

2lgPiσ
2

zs

2

(σ2
za + σ2

Ii
)
(

(σ2
za + σ2

Ii
) + |Hi|2lgPi

)

]1

0

(8)

where Θi =
√

|Hi|2lgPiσ2
zs (γ +

∑

j 6=i

∑

i ζi,j)Φi, Φi =

4W (σ2
za + σ2

Ii
)
2
+4W |Hi|

2lgPi(σ
2
za+σ2

Ii
)+|Hi|

2lgPiσ
2
zs (γ+

∑

j 6=i

∑

i ζi,j) ln(2), and ζi,j is a two-dimensional Lagrange
multiplier chosen to satisfy the consensus constraint C4. Opera-
tor

[

x
]c

d
is defined as

[

x
]c

d
= c, if x > c,

[

x
]c

d
= x, if d ≤ x ≤

c,
[

x
]c

d
= d, if d > x, respectively. It can be verified that ρ∗i is a

monotonic increasing function of Pi, i.e.,
∂ρ∗

i

∂Pi

> 0. As a result,

we expect that when Pi is large enough, ρ∗i will have a value
close to 1. We note that the proposed suboptimal algorithm
has a polynomial time complexity due to the convexity of the
problem formulation w.r.t. the individual optimization variables.

C. Suboptimal Algorithm 2

In this section, we propose a suboptimal resource allocation
algorithm which is asymptotically optimal in the high SINR
regime. For facilitating the design of an efficient resource
allocation algorithm, we augment the optimization variable
space by replacing ρi with two auxiliary variables, i.e., ρIi
and ρEi . Specifically, ρIi and ρEi are associated with the power
splitting ratios of the power streams for information decoding
and energy harvesting, respectively. Note that ρIi + ρEi = 1
has to be satisfied which indicates that the power splitting unit
does not introduce any extra power gain to the received signal.
In addition, we rewrite and approximate the channel capacity
between the transmitter and the receiver on subcarrier i as

Ci = W log2

(

1 +
Piρ

I
i lg|Hi|

2

ρIi (σ
2
za + σ2

Ii
) + σ2

zs

)

(9)

≈ W log2

( Piρ
I
i lg|Hi|

2

ρIi (σ
2
za + σ2

Ii
) + σ2

zs

)

in high SINR, i.e., log2(1 + x) ≈ log2(x), x ≫ 1. As a
result, the objective function is now jointly concave w.r.t. ρIi
and Pi since the two eigenvalues of the Hessian matrix of Ci,

−1
P 2

i
log(2)

and −
(σ2

zs
)2+ρI

i (2σ2

za
+2σ2

Ii
)σ2

zs

(ρI

i
)2 log(2)

(

σ2

zs
+ρI

i
σ2

za
+ρI

i
σ2

Ii

)

2 , are non-positive.

Furthermore, we rewrite constraints C1, C4, and C6 as

C1 :

nF
∑

i=1

Pi|Hi|
2glη ≥

P req
min

ρE1
, (10)

C4 : ρE1 = ρEr , ∀r = {2, . . . , nF }, and (11)

C6 : ρIi + ρEi = 1, ∀i, (12)

respectively. Finally, we impose a non-negative value constraint
on the auxiliary variables, C7: ρIi , ρ

E
i ≥ 0, ∀i. Hence, the con-

straints C1–C7 span a convex feasible solution set. Therefore,
the problem with the approximated channel capacity (9) is
jointly concave w.r.t. the optimization variables and traditional
convex optimization techniques can be used for obtaining the

3
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TABLE II
SYSTEM PARAMETERS

Receiver distance 10 meters
Multipath fading distribution Rician fading (Rician factor 6 dB)
Carrier center frequency 470 MHz
Number of subcarriers nF 128
Total bandwidth 20 MHz

Signal processing noise σ2

zs −35 dBm

Antenna noise σ2

za −115 dBm
Channel path loss model TGn path loss model
Lognormal shadowing g 1
Circuit power consumption PC 40 dBm
Max. power grid supply PG 50 dBm
Power amplifier power efficiency 1/ε = 0.16
Min. required power transfer P req

min
0 dBm

Energy harvesting efficiency η 0.8

solution. The Lagrangian of the transformed problem with the
approximated objective function is given by

L(λ, β, γ,µ,φ,P,ρ)

=

nF
∑

i=1

Ci−λ
(

PC +

nF
∑

i=1

εPi − PPG

)

−

nF
∑

r=2

φr(ρ
E
1 − ρEr )

−β
(

nF
∑

i=1

Pi − Pmax

)

− γ
(P req

min

ρE1
−

nF
∑

i=1

Pi|Hi|
2glη

)

−

nF
∑

i=1

µi(ρ
I
i + ρEi − 1), (13)

where µ and φ are the Lagrange multiplier vectors with
elements µi and φj which are associated with constraints C6
and C4, respectively. Therefore, the transmit power and the
power splitting factor can be obtained as

P ∗
i =

[

W

ln(2)(α+ β − γ)

]+

, ∀i, (14)

ρI∗i =

[

√

µi σ2
zs

(

4W (σ2
za + σ2

Ii
) + µi σ2

zs ln(2)
)

2µi (σ2
za + σ2

Ii
)
√

ln(2)
(15)

−
σ2
zs

2 (σ2
za + σ2

Ii
)

]+

, ∀i,

ρE∗
r =

[

µr + φr

]+

, ∀r{2, . . . , nF }, and (16)

ρE∗
1 =

[ P req
minγ

µ1 +
∑nF

j=1 φj

]+

. (17)

The power allocation solution in (14) suggests that equal power
allocation across different subcarriers is optimal in the high
SINR regime. Moreover, P ∗

i is decoupled from ρI∗i and, in
contrast to suboptimal algorithm 1, iteration between P ∗

i and
ρI∗i is not required for obtaining the solution. Since the consid-
ered problem with the approximated objective function is jointly
concave w.r.t. the optimization variables, the problem can be
solved efficiently by finding the optimal Lagrange multipliers
with numerical solvers [8].

V. SIMULATIONS

In this section, we evaluate the performance of the proposed
power allocation algorithms using simulations. The simulation
parameters can be found in Table II. For the optimal resource
allocation algorithm, we use 1000 equally spaced intervals
for quantizing the range of ρi for facilitating the full search.
Besides, the maximum number of iterations Nmax in suboptimal
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Fig. 2. Average system spectral efficiency (bit/s/Hz) versus maximum transmit

power allowance, Pmax, for different levels of INR,
σ2

Ii

σ2

zs

.

algorithm 1 is set to 5. Note that if the transmitter is unable
to guarantee the minimum required power transfer P req

min, we
set the system capacity for that channel realization to zero to
account for the corresponding failure. For the sake of illustra-
tion, we define the interference-to-signal processing noise ratio

(INR) as
σ2

Ii

σ2

zs

.

A. Average System Spectral Efficiency

Figure 2 plots the average system spectral efficiency
(bit/s/Hz) of the three proposed algorithms versus the maximum

transmit power allowance, Pmax, for different INRs,
σ2

Ii

σ2

zs

. It

can be observed that the spectral efficiency of all algorithms
increases with increasing Pmax. This is attributed to the fact that
the transmitters in the algorithms radiate all the power available
at the transmitter at every time instant whenever it is possible.
Besides, an increasing amount of INR impairs the spectral
efficiency of the system, despite the fact that part of the energy
can be harvested by the receiver for satisfying the minimum re-
quired power transfer. On the other hand, suboptimal algorithm
1 performs very close to the optimal algorithm in all considered
scenarios due to the iterative optimization. Besides, as expected,
suboptimal algorithm 2 gives an excellent performance when
Pmax is large since it is asymptotically optimal in the high
SINR regime. Yet, the performance of suboptimal algorithm 2
is less appealing in the low SINR regime, e.g. for INR = 20 dB
and Pmax < 18 dBm, compared to the other two algorithms,
due to the approximation of the objective function, cf. (14).

B. Average Harvested Power and Power Splitting Ratio

Figures 3 and 4 show, respectively, the average power split-
ting ratio, ρi, of the optimal algorithm and the two suboptimal
algorithms versus maximum allowed transmit power, Pmax, for

different levels of INR,
σ2

Ii

σ2

zs

. For the optimal algorithm, it can be

observed in Figure 3 that in all considered scenarios, the values
of ρi increase w.r.t. to the maximum transmit power allowance
Pmax. Although splitting more power for information decoding
could also possibly increase the associated interference power,
ρi(σ

2
za + σ2

Ii
), the power gain due to an increasing ρi in the

signal strength of the desired signal, ρiPi|Hi|
2, is able to

counteract the performance impairment since the desired signal
strength dominates the total received power. Besides, the slope
of the curves depends heavily on the values of INRs and Pmax.
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Indeed, the role of ρi is to balance the spectral efficiency caused
by ρiPi|Hi|

2 and the degradation caused by ρi(σ
2
za+σ2

Ii
) which

results in a non-trivial trade-off between INR, Pmax, and ρi,
cf. (2), (3). For instance, for a fixed small value of Pmax (e.g.
Pmax < 18 dBm), the average optimal value of ρi is higher for
INR= 20 dB than for INR = 10 dB. Yet, for a fixed large value
of Pmax (e.g. Pmax > 18 dBm), the average optimal value of ρi
is higher for INR= 10 dB than for INR = 20 dB. The detailed
trade-off between these variables will be investigated in future
work. On the other hand, Figure 4 shows that the values of ρi
for the two suboptimal algorithms increase monotonically w.r.t.
Pmax. In particular, both suboptimal algorithms have a higher
preference for splitting more power for information decoding in
the high INR regime. This is because the suboptimal algorithms
only split enough power to satisfy the minimum required power
transfer constraint C1 with equality (see Figure 5) and allocate
the remaining power for information decoding.

Figure 5 reveals that, for the optimal algorithm, the average
harvested power is a bell-shape function of the maximum
transmit power allowance Pmax. Besides, the amount of har-
vested power is always larger than the minimum required
power transfer P req

min. On the contrary, for the two suboptimal
algorithms, the receivers only harvests just enough power for
satisfying the minimum required power P req

min which limits the
power gain Piρi in the channel capacity. Indeed, the two
suboptimal algorithms both achieve a lower average system
capacity and a lower average harvested power compared to
the optimal algorithm. This is because the two suboptimal
algorithms are not able to fully exploit the spectral efficiency
gain achieved by ρiPi|Hi|

2 and to reduce the degradation
caused by ρi(σ

2
za + σ2

Ii
).

VI. CONCLUSIONS

In this paper, we formulated the power allocation algorithm
design for simultaneous wireless information and power transfer
in OFDM systems as a nonconvex optimization problem. The
problem formulation took into account the minimum required
power transfer for system capacity maximization. The prob-
lem was solved by a one-dimensional full search and convex
optimization techniques which incurred a high complexity at
the transmitter. Hence, two low-complexity suboptimal iterative
algorithms were proposed to find a good compromise between
computational complexity and system performance. Simula-
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tion results illustrated that the proposed suboptimal algorithms
achieved a close-to-optimal system capacity.
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