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ABSTRACT

The aim of this study is to present a new method for auto-

matic motion compensation for ultrasound contrast imaging

and to assess the impact on parametric perfusion imaging us-

ing linearized log-compressed data. Linear and non-linear

ultrasound imaging are used for registration instead of one

modality. The perfusion parameters estimated from the analy-

sis of the time motion-compensated sequences of the contrast

images show a great improvement in accuracy compared to

the results obtained on uncompensated sequences and com-

pensated sequences by linear images alone.

Index Terms— motion-compensation, ultrasound con-

trast imaging, parametric perfusion imaging.

1. INTRODUCTION

Contrast enhanced ultrasound (CEUS) imaging has been de-

veloped in order to visualize the micro-circulation in tissue

[1] and to assess the perfusion measurements (the amount of

blood that flows through a volume of tissue). Ultrasound con-

trast agents (UCA) are used in CEUS and are made as so-

lutions of gas micro-bubbles in a fluid that can be adminis-

tered intravenously to a patient to increase the scattering from

blood. In addition to enhancing the sensitivity of ultrasound

to blood flow, the micro-bubble contrast agents show a great

potential for quantitative perfusion imaging [2]. Tissue perfu-

sion is an essential indicator in clinical assessment of a wide

range of clinical conditions such as heart diseases and cancer

[2]. The evaluation of the quantitative parameters are needed

to monitor changes in tumor micro-vascular blood flow.

There are several techniques for micro-bubble injection.

With a bolus injection technique, the curves of image in-

tensity are expressed as a function of time (time-intensity

curves) for the quantification of blood flow in a region of

interest (ROI) selected by an operator on one image. The

time-intensity curve can be fitted with a mathematical model

derived from the indicator-dilution theory [3] and defined by

a set of parameters [4]. This mathematical approach leads to

the analytical determination of important perfusion parame-

ters [5] like peak intensity (PI), mean transit time (MTT), the

area under the time-intensity curve (AUC).
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Fig. 1. Time-intensity curves with/without motion compen-

sation.

One of the main problems in the estimation of perfusion

quantification parameters is the motion present in the im-

age sequence caused by internal organ or probe movements.

ROI’s selected by an operator don’t strictly track the same

zone throughout the sequence. To enhance the quality of the

estimated perfusion parameters we need to compensate for

this motion by image registration. The latter is obtained by

performing a geometrical transformation between a reference

image and moving images (images to be spatially aligned

with respect to the reference image). Figure 1 shows an ex-

ample of time-intensity curve with/without motion compen-

sation. The application of the motion compensation reduces

the variation of the intensity. A large number of methods

for image registration in traditional ultrasound imaging are

described in the literature [6]. But, a few range of registration

methods are available for CEUS. The registration of contrast

ultrasound images is a quite difficult task due to low signal-

noise ratio, speckle and non-uniformity of tissue contrast

uptake [7]. The best example of the application to CEUS

acquisitions proposed in literature is given by Rognin and al.

[8, 9]. They present a new approach for automatic motion
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compensation based on the use of multiple mask method and

predictive motion model [9]. Their approach is validated on

parametric perfusion imaging and it improves the accuracy of

the parameter estimates compared to the results obtained by

original image sequence.

With certain imaging systems, linear images correspond-

ing to tissue responses are acquired simultaneously with

non-linear images detecting only the micro-bubbles flowing

through the tissue. Such a system would allow the clinician

to view the contrast agent signals separately from the tissue

signals. The registration of the contrast images is usually

achieved by alignment of linear images [10] obtained at dif-

ferent times during the passage of a contrast agent. Our first

objective is to exploit two channels input data for registration:

linear and non-linear sequences to improve motion compen-

sation (and, thus perfusion quantification). The second is how

we are going to combine the two channels together to give

the best results. The final objective is to investigate if the

motion compensation based on the two modalities provides

better results than that based on linear images alone. In fact,

the non-linear response of micro-bubbles reveals important

details (micro-vasculature structures) which are not detected

by the linear imaging and these details are complementary

for image registration.

In this paper, we present a new approach called dual-mode

for automatic motion compensation using: linear and non-

linear imaging to improve the quality of the estimated perfu-

sion parameters. Section 2 introduces the proposed registra-

tion method and the technical choices related to this method

to help understand the added value of the dual-mode registra-

tion strategy. While section 3 presents the validation and the

results obtained by our approach,Whereas section 4 discusses

some general improvement and the perspective.

2. MATERIALS ANDMETHOD

2.1. Image Sequence Acquisition

Five hepatic CEUS sequences were acquired for patients with

focal liver lesions. The contrast agent used was SonoVue

(Bracco Spa, Milan, Italy) injected intravenously as bolus.

When the contrast agent was administrated, contrast ultra-

sound sequence were acquired during 35 s to 50 s corre-

sponding to 340 to 480 images. The image acquisition is

obtained at a low mechanical index of 0.15 with a curved

phased-array transducer 4C1-S connected to a Sequoia 512

ultrasound scanner (Acuson). Dual images in conventional

(linear) and cadence CPS (Cadence Contrast Pulse Sequenc-

ing, Siemens-Acuson) were used for the acquisition and for

the registration.

2.2. Registration strategy

Image registration determines the optimal geometrical trans-

formation of moving images IM , with respect to a reference

image IF using a similarity metric. From a mathematical

point of view, there is an optimization problem in which the

cost function C (similarity measure) is minimised via the

transformation Tµ where µ is the vector of transformation

parameters [6]

T̂µ = argmin
Tµ

C(Tµ; IF , IM ) (1)

In this study, we used rigid transformation: two transla-

tions: vertical and horizontal (tx, ty) and one rotation θz in

rad. Then µ is given by (θz , tx, ty). In the literature many

choices have been proposed for the cost function C. The

commonly used intensity-based cost functions are the sum

of squared differences (SSD), normalized correlation coeffi-

cient, mutual information (MI) [11] and normalized mutual

information (NMI) [12]. The NMI is used in this study be-

cause it was found to be the most robust similarity criterion

in the presence of changes in contrast [13]. We combine the

two modalities together linear and non-linear to make the reg-

istration. Then, the total cost function is the sum of two cost

functions Cl and Cn. Each one depends on the type of the

system imaging: linear/non-linear.

There are many strategies for the selection of the refer-

ence image in the registration of the contrast sequence. The

first possibility is based on floating reference images: the sec-

ond image is aligned with the first image; the third image is

aligned with the second image etc. This is incremental reg-

istration [14, 15]. This method is not well adapted to linear

images due to an accumulation of misalignments introduced

by the incremental registration. The second possibility is to

set only one reference image and the other images are aligned

with respect to this fixed image. This method is called non-

incremental registration [15]. It is not convenient for non-

linear images because of the constantly-evolving properties

of the contrast images.

The underlying principle of our approach is to use respec-

tively the incremental and the non-incremental registration for

non-linear and linear images [16]. With this manner of com-

bination, we can avoid the problems of misalignments men-

tioned before. We note all the reference images by IF =
(I l0, I

n′

k ) where I l0 is the reference linear image and is fixed

during the registration process and In
′

k are the floating refer-

ence non-linear images acquired at time tk, and change dur-

ing the process. The moving images are IM = (I lk+1
, Ink+1

)

where I lk+1
are the moving linear images acquired at tk+1

and Ink+1
are the moving non-linear images. Then, the cost

function is defined as:

C(Tµk+1
; IF , IM ) = α Cl(Tµk+1

; I l0, I
l
k+1)

+ (1− α) Cn(Tµk+1
; In

′

k , Ink+1)

α is the weight parameter, belonging to [0, 1] and chosen to

be equal to 0.5. Tµk+1
is the transformation to apply on the

moving images acquired at tk+1. To avoid the accumulation

2
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of misalignment errors in the incremental registration for non-

linear images, the floating reference non-linear images must

be aligned using the last transformation.

In
′

k = Ink (Tµk
) (2)

A block diagram of the registration is shown in figure 2. Once

the similarity measure has been defined the next task con-

sists of finding the parameters that optimize the designed cost

function usually by means of an iterative optimization method

embedded in multiresolution optimization [6]. The experi-

Registration

Sequence 2D+t

Registered 2D+t
sequence

Il
0 selection

Registered images
(Il

k+1(Tµk+1
), In

k+1(Tµk+1
))

Moving images
(Il

k+1, I
n
k+1)

Reference images
(Il

0, I
n
k (Tµk

))

Fig. 2. Block diagram of the registration method

mental results in [17] indicate that an adaptive stochastic gra-

dient descent method is a good choice for many applications.

We used this technique to obtain the optimal transformation

parameter vector µ̂.

3. REGISTRATION EVALUATION

Several approaches may be considered for the validation of

the image registration. The qualitative evaluation is a method

based on visual inspection. This method is subjective and

not accurate. Another method is the comparison with man-

ual registration which needs a lot of time to accomplish the

manual registration by the expert. Our approach consists of

using a quantitative validation based on parametric imaging

of the quality of fit (QOF) index [9]. The latter is then used

to evaluate the quality of the registration and to compare our

approach with the traditional method based on linear images

alone.

3.1. Time-intensity model

The bolus kinetics analysis implies curve-fitting of the data

which is a function of time. Ideally, a raw radio frequency

(RF) echo-signal should be used for analysis. In our case we

don’t have these (RF) data and we only have log-compressed

data in the form of DICOM files. A proper linearization is ap-

plied to reverse the log-compression before curve-fitting and

analysis. A region of interest (ROI) is chosen inside the tumor

in all acquired image sequences. Then, time-intensity curve

is calculated by computing the average intensity of all pixel

values in the ROI for the sequence. After, the curve is fitted

using a parametric bolus model function If (t) defined as:

If (t) = I0 +
AUC√

2πσ(t− t0)
e−

(ln(t−t0)−µ)2

2σ2 (3)

which is the lognormal function and is chosen to fit time-

intensity curve. AUC is the area under the curve, µ and σ

are the mean and standard deviation of the normal distribu-

tion of the logarithm of the independent variable t, t0 is the

bolus arrival time, and I0 is the baseline intensity offset. The

figure 3 show time-intensity curve with motion compensation

fitted with lognormal model.
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Fig. 3. Time intensity curve with motion compensation, I(t)
with its corresponding fitted curve If (t)

3.2. Parametric imaging

A parametric image is a spatial distribution of any perfu-

sion parameter and is calculated from the analysis of time

sequence of contrast images. We choose the quality of fit

(QOF) [9] as a perfusion parameter. When the QOF is too

low the related perfusion parameter can not be considered

as reliable [9]. With motion compensation, the QOF should

be improved. The QOF measures the difference between the

time intensity curves I(t) and its corresponding fitted signal

3
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If (t). It is given as:

QOF = 100

(
1− SSR

SST

)

Where SST is the sum of squares of differences

SSR =

N∑

t=1

(I(t)− If (t))
2

where N is the number of samples, t is the sample index and

SST is the sum of squared differences about the mean.

SST =

N∑

t=1

(
I(t)− If

)2

where If is the mean of If (t).

3.3. Quantitative evaluation

Table 1 shows the mean QOF for compensated sequences

with: dual-mode and linear-mode registrationmethod, and for

uncompensated sequences. The linear-mode registration is

based only on the linear images and uses the non-incremental

registration method.

Patient Comp. (%) Comp. (%) Uncomp. (%)

Dual-mode Linear-mode

1 87 86 42

2 70 58 50

3 67 65 37

4 87 75 64

5 69 53 17

Table 1. Values of QOF for compensated and uncompensated

sequences calculated for all the patients.

The mean QOF calculated for 5 patients increase strongly

with our registration method comparing to uncompensated

sequences and are higher than the values given by the linear-

mode method. The QOF index differences between dual

mode and linear mode vary from 1 % to 16 %. In the case

of patient 1 and 3, the QOF index for dual-mode are close

to the linear-mode. Therefore, the non-linear imaging is not

able to add additional information to the linear imaging. But

for the rest of patients, the difference is very large. This is

explained by the fact that the use of both modalities improve

the registration better than the use of one modality.

With such results we conclude a significant improvement

in the assessment of perfusion. Figure 4.(a) and (b) show

parametric images of QOF for compensated and uncompen-

sated sequence respectively, calculated for patient 5 in the

ROI. The red color in the parametric image is equivalent to

a maximum of QOF in the image and the blue color repre-

sent a small value of QOF. The maximum of QOF is found in

compensated sequence.
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Fig. 4. (a) and (b) Parametric images of QOF computed for

patient 5 on the compensated sequence with dual-mode regis-

tration and the uncompensated sequence, respectively.

4. CONCLUSION AND DISCUSSION

The proposed automatic registration method is based on the

dual-mode: linear and non-linear imaging. Non-incremental

registration is used for linear imaging and incremental reg-

istration for non-linear imaging. The dual-mode registration

method performs a rigid transformation with normalized mu-

tual information for similarity criterion. In the study, two cost

functions are used. The first one is for linear imaging and the

second is for non-linear imaging. Our technique used adap-

tive stochastic gradient descent method for the research of the

optimal transformation parameters. The quality of fit index

is used to evaluate the quality of the registration. It shows

the ability of our compensation method to improve the accu-

racy of the perfusion estimation parameters. Further possible

improvements may be explored. Firstly, the influence of the

parameter α, tuning the weight of the linear/non-linear terms
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(chosen equal to 0.5 in this study) could be investigated. Sec-

ondly, comparison with manual registration would be an ulti-

mate validation of our method.
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