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ABSTRACT 

 

The localisation of the anatomical structures in retinal 

fundus images is an important step in the automated analysis 

of retinal images. In this paper automated methods for the 

localisation of the optic disc and the fovea are proposed. For 

an optic disc localisation, the area of most vasculature loops 

is determined to locate an initial optic disc centre, followed 

by morphological operations and a circular Hough 

Transform to determine its boundary and the final centre. 

For fovea localization, foveal features and a model of 

geometric relations between the fovea and both the optic 

disc and the vasculature are used to locate its boundary and 

centre. Both methods were evaluated using two sets of 

images from different datasets, and their competitive 

performance indicate that they could be used for a 

computer-aided mass localisation of the optic disc and the 

fovea as part of an automatic screening programme. 

 

Index Terms— Biomedical image processing, retinal 

vasculature, optic disc, fovea, morphological operations  

 

1. INTRODUCTION 

 

The optic disc (OD) is a spot on the retina where ganglion 

cells exit to form the optic nerves. It is also the entry point 

for the major vasculature that supplies the eye with blood. 

The fovea is the retinal part where the most of  

photoreceptor cells are concentrated; hence it is the most 

specialised part of the retina and responsible for all activities 

when visual detail are required. 

 Abnormalities associated with common eye diseases 

such as diabetic retinopathy are distributed non-uniformly 

over the retina [1]. The detection of abnormalities and 

knowing their spatial distributions with reference to the 

retinal anatomy, particularly the optic disc and the fovea, are 

very important steps in evaluating the presence and severity 

of diabetic retinopathy [2]. In addition, the location of the 

optic disc is an important issue in retinal image analysis 

because it is a significant landmark feature, and its diameter 

is used as a reference length for measuring distances and 

sizes. Moreover, as the fovea is the centre of vision, the 

detection and diagnosis of lesions can provide a more 

precise and meaningful evaluation of the risk when the 

spatial locations are described with reference to the fovea 

location [3]. 

     Fundus images are used for diagnosis by clinicians to 

check for abnormalities or any change in their features. 

Manual analysis and diagnosis of abnormalities in retinal 

images require a great deal of time and energy. Hence, 

computer-aided screening will save cost and time 

considering the large number of retinal images that need to 

be analysed.  

 The automated localisation of the optic disc and the 

fovea is a difficult task for images of variable quality and in 

the presence of abnormalities. Previous related works 

localised the OD using different methods, where some 

focused on intensity based features as in Lalonde et al. [4] 

and Reza et al. [5], who used the bright object features to 

distinguish the OD as the brightest region in the retinal 

image from the background. They tend to fail in OD 

localisation when the OD is not clear or there is an 

abnormality brighter than the OD. Other works used the fact 

that the OD is the region where the vasculature emerges and 

made use of the vasculature features in this region to 

localise the OD as in Foracchia et al. [6]. Other researchers 

made use of both facts that the OD is the brightest region 

and  the origin of vasculature to localise it as in Sekhar  

et al. [7], and Fleming et al. [8]. 

 For fovea localisation, some techniques used features of 

the fovea as being the darkest area, and the fovea centre 

location being below the OD centre as in Sinthanayothin  

et al. [9] and Welfer et al. [10]. In addition to the fovea 

features and location, its relative position with respect to the 

OD is used as in Fleming et al.  [9]. Moreover, others used 

fovea features and its position with respect to the OD and 

the vasculature to localise the fovea as in Tobin et al. [11].    

 In this paper, a novel method for the OD localisation is 

proposed based on determination of the area of most 

vasculature loops and its centre is considered as an initial 

estimate of the OD centre. This is followed by boundary 

determination by computing the largest and the brightest 
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blobs of the image using adaptive histogram thresholding. 

With regard to the fovea localisation, a new method is 

presented based on the fovea features and geometric 

relations with the OD and main arcade of the vasculature.  

 This paper is structured as follows: Section 2 presents 

the methodology and outlines the main techniques used, 

Section 3 presents results and discussion, while conclusions 

are presented in Section 4.  

        

2. METHODOLOGY 

 

2.1. Optic Disc Localisation 

 

In the literature, the majority of OD localisation techniques 

are based on OD features i.e. shape, size and colour. In 

some retinal images the OD is not clearly visible or some of 

bright lesions may look similar to the OD in shape, size and 

colour. In these cases, the techniques which are using OD 

features may fail to localise the OD. 

 In this paper, we propose a method based on the features 

of retinal vasculature and its spatial relation with the OD to 

localise the OD. The vessel map is turned into a network of 

vessels, branches, and loops, and then a network of most 

vasculature loops can be selected and used as candidate area 

for the initial OD centre.  

 

• Vasculature-loops. A binary vasculature image is required 

to construct this network, where the vessels that are also 

connected in the original image should be connected in the 

binary image to accomplish a successful approach. To 

obtain an increase of vessel connectedness, an intervention 

on the threshold of the proposed vasculature detection is 

made to retrieve the entire vessels and ensure better vessel 

connectedness. Steps of determining the most vasculature 

loops are as follows: 

1. Increasing vasculature connectedness. This is 

accomplished by decreasing the binarization threshold 

level used in the multi-scale technique  for detection of 

the vasculature  proposed in a previous work  [12] by 

5%. This operation increases true positives and retrieves 

entire vessels with some increase in the undesired false 

positives.  

2. Generating vessel skeleton. A morphological 

skeletonisation is applied to the vasculature image. This 

operation largely preserves the extent and the 

connectivity of the original vessel while throwing away 

most of the foreground pixels. 

3. Removing small vessels. The vessel is a group of many 

pixels where a small vessel starts with a pixel of one 

neighbour and ends with another pixel also of one 

neighbour. Small vessels are suppressed from the 

vasculature before classifying into loops and branches. 

4. Loop fitting. The vessels inside the OD emerge and 

overlap forming loops and semi-loops in contrary to 

vessels outside the OD which are spread away from their 

origin. To fit small semi-loops in the vasculature image, 

the method proposed by Qiao and Ong [13] was applied. 

In this fitting method, a connectivity-based algorithm for 

fitting multiple-circles is proposed, where false circle 

detection is solved using circular arcs, which are intra- 

connected subsets that agree with the circular models 

with a specified error.                    

5. Suppressing large loops. As the loops inside the OD are 

expected to be smaller than the OD, the original and  

fitted loops that have a major axis length bigger than a 

threshold (�) are excluded and considered as branch 

vessels, where T is the mean diameter of the OD which 

is found to be 16.5 times the average vasculature width 

according to what is found in [7]. 

 

• Selection of most vasculature loops. The most constructed 

vasculature loops can be used to find the initial OD centre. 

The OD contains the optic nerve from which a few main 

vessels split up into many smaller vessels which spread 

around the retina. Vasculature segments in this area of the 

retina are often small and are therefore often combined into 

several loops connected to each others. An increasing 

amount of vessel connections of a loop also increases the 

probability of the loop being located in the OD area. The 

procedure of determination of the initial OD centre is 

presented as follows: 

1.  The area of the most vasculature loops is selected as a 

candidate location for the OD.  

2.  The candidate OD location is surrounded by a boundary 

box where its centre is considered as initial OD centre. 

Figure 1 illustrates results of allocating the most vasculature 

loops surrounded by a bounding box to determine the initial 

OD centre. 

 

• Boundary  and  final  OD  centre  determination. After 

localisation of the initial OD centre, boundary of the OD is 

determined by selecting a region of interest (ROI) within the 

area around an allocated initial OD centre. The selected ROI 

is a sub-image from a pre-processed green channel image 

with the same dimension proportion of the entire image and 

its smaller dimension is twice the mean diameter of the OD. 

Based on trial and error experiments carried out by [7] on  

images from different datasets, the OD mean diameter was 

found to be 16.5 times the average vasculature width for all 

datasets.   Initial boundary of the OD is then determined by 

computing the largest and the brightest blobs within the sub-

image using adaptive histogram thresholding method.  

 The magnitude gradient of the ROI is calculated using 

morphological operations. Initially, morphological closing is 

performed on the ROI to fill the vessels followed by 

morphological opening to remove large peaks. Then the 

gradient is calculated by subtracting the eroded ROI from 

the dilated one. A circular Hough Transform is applied to 

the reconstructed image to determine the boundary of the 

OD. The radius of the circular Hough Transform to find the 

optic disk boundary is calculated from the retinal 

vasculature width. After locating the OD boundary, the final 
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OD centre is determined as the centre of the OD boundary. 

Figure 2 shows results from the proposed method

the boundary and final OD centre. 

 

2.2. Fovea Localisation 

 

The proposed method for the fovea localisation 

defining a candidate ROI with reference to 

retinal landmarks, followed by a shape and intensity

The two main retinal vessels (known as the arcade) can 

together be approximated as a parabola and in most retinal 

images the fovea is located within this arcade.

vasculature detection, using the method described in an 

earlier paper [12], we followed the method described in 

to fit the two main vessels as a parabola. 

 A parabolic Hough Transform 

segmented thick vasculature to approximate the two main 

vessels into a parabolic curve, thus finding the vertex where 

the two main vessels emerge. As the OD centre is assumed 

to lie exactly where the vasculature emerge

vertex of the parabola can be used as the 

the OD centre. On the basis of this parabola information, the 

candidate region for the fovea is defined as a circle with a 

diameter of twice the diameter of the OD 

main axis of the fitted parabola and centered at a distance of 

2.5DD from the vertex. Although the fovea is

to the OD [3], we select the ROI four times as large to 

ensure that all fovea pixels are within the selected ROI. 

threshold value is calculated within the ROI

 
                      (a)                                           (b)

 
                     (c)                                          (d)

Figure 1. Construction of the method of most vasculature 

loops for OD localisation, (a) original colour image, 

skeleton of the vasculature, (c) vasculature loops on the 

original gray image (white = branches, black = loops),

(d) Zoomed area of most loops with a boundary box.

 
OD centre is determined as the centre of the OD boundary. 

proposed method to detect 

localisation is based on 

with reference to the established 

followed by a shape and intensity search. 

(known as the arcade) can 

together be approximated as a parabola and in most retinal 

images the fovea is located within this arcade. After the 

, using the method described in an 

we followed the method described in [7] 

the two main vessels as a parabola.  

 is applied to the 

segmented thick vasculature to approximate the two main 

s into a parabolic curve, thus finding the vertex where 

rge. As the OD centre is assumed 

emerges, the detected 

vertex of the parabola can be used as the initial estimate of 

parabola information, the 

candidate region for the fovea is defined as a circle with a 

of the OD (DD) along the 

main axis of the fitted parabola and centered at a distance of 

gh the fovea is equal in size 

ur times as large to 

n the selected ROI. The 

is calculated within the ROI in such a way 

that the segmented area has an 

the OD. A scheme for fovea ROI overlaid on the original

retinal image is illustrated in Figure 3

 Because the fovea is not completely obvious in some 

images, the lowest mean intensity is compared with the 

second lowest mean intensity to avoid mistaking the 

peripheral area where the illumination is relatively dark as

in the fovea. The centroid of the lowest mean intensity 

cluster is specified as the center of the fovea when the 

difference is obvious and the

is greater than 1/6 the area of the OD.
 

Figure 3. Geometric relations between the f

retinal features, overlaid on an original image.

 
(a)                                           (b) 

 
(c)                                          (d) 

Construction of the method of most vasculature 

, (a) original colour image, (b) 

(c) vasculature loops on the 

black = loops), and

a boundary box.  

                     (a)                                            (b)

                    (c)                                             

Figure 2. Steps of the method of most vasculature loops

sub-image as ROI from initial OD centre, (b

applying gradient magnitude, (c) thresholding result, and 

(d) determined boundary and centre 

 

2DD

 ROI for fovea

that the segmented area has an area not bigger than that of 

vea ROI overlaid on the original 

is illustrated in Figure 3. 

Because the fovea is not completely obvious in some 

images, the lowest mean intensity is compared with the 

second lowest mean intensity to avoid mistaking the 

the illumination is relatively dark as 

the fovea. The centroid of the lowest mean intensity 

cluster is specified as the center of the fovea when the 

ference is obvious and the number of pixels in the cluster 

area of the OD. 

 
Geometric relations between the fovea and other 

retinal features, overlaid on an original image. 

  
(a)                                            (b) 

  
                         (d) 

Figure 2. Steps of the method of most vasculature loops, (a)

image as ROI from initial OD centre, (b) ROI after 

radient magnitude, (c) thresholding result, and 

and centre of the OD. 

2DD 
1DD DD 

Optic disc 

Main vasculature 
arcade 

ROI for fovea 
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 In the case of obscured fovea features due to

being covered by lesions, the method may fail in finding a 

suitable threshold value. In such a 

approximated as a circle of diameter DD at the centre of 

ROI. Figure 4 illustrates results of the fovea localisation, 

where the diameter of the modified circle is derived from 

the major axis length of the foveal boundary
 

3. RESULTS AND DISCUSSI
 

The proposed method of OD localisation was trained and 

tested using a set of 138 retinal images (40 images from 

Drive dataset [14], 81 images from Stare dataset 

17 images from Messidor Dataset [16

include healthy images and pathological images with 

different types of abnormalities. This set was divided 

randomly into a training set of 40 images and test set of 98 

images from all used datasets. Performance of the OD 

localisation was evaluated in comparison with

this technique the OD is correctly detected for all images 

except one from the Stare dataset. The 

localisation with the Messidor and the Drive datasets was 

100%, whereas with the Stare dataset it was 98.8%.

 Criteria of OD detection are used to evaluate the OD 

detection method by calculating its success rate

classifying it as either successful or failed. The accuracy of 

OD centre and boundary localisation in a pixel basis is also 

important for accurate evaluation. But, due to

any ground truth for OD localisation, we are unabl

calculate the accuracy on a pixel basis. However, the 

success of the OD localisation was evaluated with regard to 

an expert. The performance of the proposed method

                        (a)                                              (b)                                             (c)                         

Figure 4. Steps of proposed method for the fovea localisation

the ROI for fovea localisation, (c) localised boundary and centre of the fovea taken from the binary result and illustrated o

the pre-processed image, and (d) localised fovea 

 

Table 1. Comparison of OD localisation performances 

between the proposed method and previous

Reference Success rate% 

(Drive) 

  Lalonde et al. [4] -- 

  Reza  et al. [5]  95 

  Foracchia & Grisan [6] -- 

  Ying et al. [17]  97.5 

  Sekhar et al. [7] 100 

  Proposed Method 100 

 

f obscured fovea features due to lighting or 

being covered by lesions, the method may fail in finding a 

a case the fovea is 

approximated as a circle of diameter DD at the centre of the 

results of the fovea localisation, 

where the diameter of the modified circle is derived from 

the major axis length of the foveal boundary. 

RESULTS AND DISCUSSION 

The proposed method of OD localisation was trained and 

ed using a set of 138 retinal images (40 images from 

, 81 images from Stare dataset [15], and 

[16]). These datasets 

include healthy images and pathological images with 

different types of abnormalities. This set was divided 

randomly into a training set of 40 images and test set of 98 

images from all used datasets. Performance of the OD 

in comparison with an expert. In 

this technique the OD is correctly detected for all images 

e success rate of OD 

localisation with the Messidor and the Drive datasets was 

t was 98.8%. 

used to evaluate the OD 

ion method by calculating its success rate and then 

classifying it as either successful or failed. The accuracy of 

OD centre and boundary localisation in a pixel basis is also 

nt for accurate evaluation. But, due to the lack of 

ground truth for OD localisation, we are unable to 

pixel basis. However, the 

success of the OD localisation was evaluated with regard to 

roposed method was 

compared with previous related works using the Drive and 

Stare datasets as shown in Table 1.

 The proposed fovea localisation method were trained 

and tested using a set of 268 retinal images (40 images from 

Drive dataset, 81 images from

Messidor dataset and 130 images from DIARETDB0 

dataset [18]). These images represent

abnormal retinas with different typ

set was divided into a training set of 100 images (

from both Stare and DIARETDB0) and a test set of 168 

images from all datasets. Testing images were used with no 

attempt made to exclude images of poor quality

appearance. The position of the fovea was identified by an 

experienced clinician as the gro

method has been evaluated with reference to the ground 

truth and found to achieve an overall success rate of 100

with the Drive dataset and 96.3% with the Stare dataset.

 Fovea detection accuracy was measured in our work by 

calculating the Euclidean distance

the method result and the ground truth. The accepted 

distance for successful fovea localisation is adjusted to be 

proportional to the image size where the sensitivity of 

acceptance level can be changed and decided based on 

consultation  with the clinician

requirements. In accuracy calculation

30 pixels as a maximum tolerance

in an image size of 640×480 pixels

 Because it is difficult to find

criteria and same public

implemented and tested some methods using the same 

criteria and dataset of our proposed method to compare 

with. A comparison between the success rate of the 

proposed method and some 

tested on 40 images from the Drive

from the DIARETDB0 dataset  is presented in Table 2.

 The intent behind selecting these two

demonstrate that accuracy result on

images is higher than that of pathological and 

images. As most Drive images are normal and good quality, 

most tested methods are found to achieve an average 

success rate of around 100%, while in the DIARETDB0, 

which has 110 pathological images

is lower than that of the Drive dataset.

(a)                                              (b)                                             (c)                         

Steps of proposed method for the fovea localisation, (a)  green channel image, (b) pre

the ROI for fovea localisation, (c) localised boundary and centre of the fovea taken from the binary result and illustrated o

) localised fovea after modification to a circle overlaid on the original image

f OD localisation performances 

proposed method and previous related works.  

% Success rate%  

(Stare) 

71.6 

95 

97.6 

-- 

98.8 

98.8 

related works using the Drive and 

in Table 1.  

The proposed fovea localisation method were trained 

and tested using a set of 268 retinal images (40 images from 

Drive dataset, 81 images from Stare dataset, 17 from 

and 130 images from DIARETDB0  

dataset [18]). These images represent both healthy and 

s with different types of abnormalities. This 

training set of 100 images (a mixture 

Stare and DIARETDB0) and a test set of 168 

Testing images were used with no 

clude images of poor quality or bad fovea 

The position of the fovea was identified by an 

as the ground truth. The proposed 

method has been evaluated with reference to the ground 

to achieve an overall success rate of 100% 

with the Drive dataset and 96.3% with the Stare dataset. 

Fovea detection accuracy was measured in our work by 

ting the Euclidean distance between fovea centres of 

and the ground truth. The accepted 

distance for successful fovea localisation is adjusted to be 

proportional to the image size where the sensitivity of 

changed and decided based on 

clinicians and based on medical 

requirements. In accuracy calculations we used a distance of 

a maximum tolerance for successful localisation 

640×480 pixels. 

is difficult to find methods tested by same 

criteria and same publicly available dataset, we 

implemented and tested some methods using the same 

set of our proposed method to compare 

A comparison between the success rate of the 

some other previous related works 

tested on 40 images from the Drive dataset and 80 images 

dataset  is presented in Table 2. 

ind selecting these two datasets is to 

ccuracy result on normal and good quality 

images is higher than that of pathological and low quality 

Drive images are normal and good quality, 

d methods are found to achieve an average 

100%, while in the DIARETDB0, 

pathological images, the average success rate 

lower than that of the Drive dataset. 

 
(a)                                              (b)                                             (c)                                             (d) 

mage, (b) pre-processed image indicating 

the ROI for fovea localisation, (c) localised boundary and centre of the fovea taken from the binary result and illustrated on 

on the original image. 

4



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

 

4. CONCLUSIONS 

 

In this paper, a computer-assisted retinal image processing 

system for the OD and fovea localisation is proposed. For 

OD localisation, we exploited the vasculature features inside 

the OD, where the most vasculature loops are allocated to be 

used for determining initial OD centre followed by applying 

morphological gradient on a ROI to determine the OD 

boundary and then the final OD centre. The fovea features 

along with its geometric relations with the vasculature and 

OD are used to determine boundary and centre of the fovea.    

 In both proposed methods we used heterogeneous 

images from different datasets in both training and testing 

operations. Thus our proposed method has been shown to be 

robust for different image types and quality levels. Also, we 

did not use parameters which may need setting for 

application to other images.  In the proposed methods the 

vasculature features were used to guide the search for the 

OD and the fovea, thus they could be localised precisely 

even for images of low OD and fovea contrast, and the 

resulting accuracies of their localisation are superior to those 

methods that do not make use of the vasculature. 

 The performances of both methods are promising and 

could be developed further by validation with more datasets 

and their corresponding ground truths. This will contribute 

to further improvements, resulting in more robust retinal 

feature localisation that could be adapted for clinical 

purposes as part of an automated screening programme.  
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Table 2. Comparison of fovea localisation performances 

between the proposed method and previous related works.  

Reference  Success rate% 

(Drive) 

Success rate% 

(DIARETDB0) 

Sekhar et al. [7] 100 95 

Fleming et al. [8] 97.5 92.3 

Sinthanay et al. [9] 95 93.8 

Welfer et al. [10] 97.5 93.5 

Tobin  et al. [11] 100 95 

Proposed method 100 96.3 
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