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Université de Lyon, F-42023, Saint-Etienne, France,
CNRS, UMR5516, Laboratoire Hubert Curien,Université de Saint-Etienne
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ABSTRACT

A digital hologram is a 2-D recording of the diffraction
fringes created by 3-D objects under coherent lighting. These
fringes encode the shape and 3-D location information of the
objects. By simulating re-lighting of the hologram, the 3-D
wave field can be reconstructed and a volumetric image of the
objects recovered. Rather than performing object detection
and identification in this reconstructed volume, we consider
direct recognition of diffraction-patterns in in-line holograms
and show that it leads to superior performance. The huge
variability of diffraction patterns with object shape and 3-D
location makes diffraction-pattern matching computationally
expensive. We suggest the use of a dimensionality reduction
technique to circumvent this limitation and show good de-
tection and recognition performance both on simulated and
experimental holograms.

Index Terms— Digital Holography, Pattern Recognition,
Singular Value Decomposition, Inverse Problems.

1. INTRODUCTION

Digital holography is an imaging technique used in various
domains for its wide field and large depth-of-focus. By cap-
turing the 3-D information in a single 2-D hologram, it can be
applied to track moving micro-objects in fields ranging from
fluid mechanics [1, 2, 3, 4] to biology [5, 6, 7]. The advan-
tage of in-line digital holography compared to its alternatives
is the simple imaging setup (a coherent source plus a lensless
imaging sensor) and high accuracy. For example, in particle
imaging sub-micron accuracy is achieved for transversal lo-
cation and sizing, and about 10 microns depth accuracy for a
setup without magnification [8].

Following the optical reconstruction used when holo-
grams were recorded on holographic plates and re-illuminated
to reveal the 3-D image they encoded, digital holograms are
still often digitally processed in two steps: 1) reconstruction
of a volumetric image by diffraction simulation, 2) analysis
of the obtained 3-D image to detect/recognize objects. Such
an approach is however sub-optimal for several reasons. First,
diffraction does not invert the recording process but leads to

the superimposition of more or less out-of-focus images of
the objects and strongly out-of-focus images known as twin
(or virtual) images. Second, due to the small physical size of
digital sensors, holograms are severely truncated. This trun-
cation leads to artifacts in the reconstructed volume close to
the sensor borders.

Direct matching of diffraction patterns on the in-line holo-
grams dramatically improves the quality of reconstructed im-
ages [9, 10, 11] and the accuracy of particle hologram anal-
ysis [12, 8]. The extension of the latter approaches to the
recognition of more general objects than spherical particles is
limited by the increase in size of the dictionary of diffraction
patterns when considering all possible 3-D locations of the
objects. We propose in this paper to circumvent this limitation
by applying a dimensionality reduction method to the dictio-
nary and derive an algorithm similar to matching-pursuit to
detect several objects directly in a digital hologram. Our pro-
posal can be used to improve the accuracy of fast reconstruc-
tions in biological applications that deal with few objects from
a known set of classes (see [13] for a potential application on
detection and localization of bacteria).

The structure of the paper is as follows: the diffraction-
pattern matching problem is presented next section; the di-
mensionality reduction of the dictionary is then described in
section 3; experimental results are reported in section 4.

2. OBJECT RECOGNITION BY
DIFFRACTION-PATTERN MATCHING

In Gabor holography, a hologram corresponds to the diffrac-
tion pattern of illuminated objects. To produce reconstructed
images of satisfying quality, this holographic setup is re-
stricted to small objects spread in mostly empty volumes.
Under such conditions, the hologram can be approximated
as the (incoherent) sum of the diffraction pattern created by
each distinct object. Furthermore, the diffraction pattern of
a given object is related to its transmittance through a con-
volution [10]. A measured n-pixels hologram d can then be
described, after proper centering and normalization, using the
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following linear model:

d = Ht+ ε , (1)

where H is a linear operator mapping a 3-D transmittance
volume represented as a n′-dimensional vector t ∈ Rn′

to a
2-D hologram d ∈ Rn in the presence of white and Gaussian
noise ε ∈ Rn. More precisely, the application of H on t cor-
responds to the sum of the 2-D convolution of each transversal
slice of t with a chirp function [10]:

d(xf , yf ) =
∑

x`,y`,z`

t(x`, y`, z`)hz`(xf − x`, yf − y`) , (2)

with hz(x, y) = sin[π(x2 + y2)/(λz)]/(λz), and where the
k-th entry of vector d, corresponding to the pixel with coordi-
nates (xf , yf ), is written d(xf , yf ), and similarly the `-th en-
try of vector t corresponds to spatial coordinates (x`, y`, z`).
The convolution kernel hz is known as Fresnel function.It is
a 2-D circularly symmetric chirp function that varies with the
depth z and the optical wavelength λ. By denoting with Hzi

the discrete convolution with kernel h( · , · , zi) that approxi-
mates diffraction at distance zi, equation (1) can be rewritten
by decomposingH as a block matrix:

d =
[
Hz1 · · · Hzp

]︸ ︷︷ ︸
H

t+ ε , (3)

where p different z-slices are considered in the 3-D transmit-
tance t.

Since each operatorHzi models diffraction at a given dis-
tance zi, diffraction-based hologram reconstruction is readily
performed by:

t̂
(diffraction)

=

Hz1
...

Hzp

d . (4)

If the transverse dimension of the transmittance is chosen
equal to that of the hologram, matrices Hzi are square and
equation (4) corresponds to a “back-projection” operation,
i.e., a reconstruction by application of the adjoint operator1.
Despite its wide use, reconstruction with the adjoint operator
suffers from strong artifacts. When simulating the diffraction
of the hologram of a planar object, instead of getting back
a crisp image of the object, an in-focus image and strongly
out-of-focus image (the twin/virtual image) superimpose:

H t
zHz ≈ I +H2z . (5)

Hologram reconstruction by equation (4) suffers from
strong location-dependent artifacts: superimposition of the
twin-images but also out-of-focus images of objects located
at other distances (sinceH t

ziHzj 6= 0 for zi 6= zj) and strong

1note that convolution kernels are symmetrical so H t
zi

= Hzi

Fig. 1. A simulated hologram of digits placed at different
depth positions, and the classical reconstruction of the volume
using back-projection operator for three of the digits.

border effects due to the absence of localization of convolu-
tion kernels h. Out-of-focus artifacts are visible in diffraction-
based reconstructions shown in Fig. 1. Rather than perform-
ing object recognition in the coarse reconstruction t̂

(diffraction)
,

we suggest performing the detection/recognition directly on
the hologram by matching diffraction-patterns.

Let M be a dictionary that collects all m object shapes
that we are looking for. From this dictionary, a dictionary of
diffraction-patterns P can be derived:

P =

Hz1
...

Hzp

M . (6)

A hologram of objects taken from the dictionary M is thus a
superimposition of diffraction-patterns found in P shifted to
the (x, y) location of each object. LetK be the matrix formed
by collecting all possible (x, y) translates of diffraction pat-
terns in P . A hologram of objects present in M can then be
described as a weighted sum of diffraction-patterns:

d = CKα+ ε , (7)

where C is a cropping operator that restricts the diffraction-
patterns in K to the support of the n-pixels hologram d and
α is an indicator vector with non-zero entries only when a
given object is present at the corresponding (x, y, z) location.
Vector α has dimension m× p× n.
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Object detection and classification can be performed di-
rectly in the hologram by exploiting the sparsity of indicator
vector α:

α̂ = arg min
α

‖d−CKα‖22 , s.t. ‖α‖0 ≤ s , (8)

with s the sparsity level, i.e., the number of objects in the
hologram. Note that in contrast to equation (4), our aim is not
to perform a reconstruction of the transmittance distribution
t but to directly locate and recognize objects from M on the
hologram.

Given the large dimension of α and the very small num-
ber of objects s (only an order of s is known), problem (8)
is best (approximately) solved using a greedy algorithm like
matching pursuit. Looking for a single object at a time, the
sub-problem to solve is of the form:

arg min
i, α

‖d− αCki‖22 , s.t. α ≥ 0 , (9)

with ki the i-th column of matrix K and α a scalar. By in-
troducing the 0-padded version of the data d̄ = C td and the
weighting matrix W = C tC, sub-problem (9) is equivalent
to a normalized maximum correlation search (i.e., matched
filtering):

arg max
i

d̄
t
Wki√
kt
iWki

. (10)

The maximum correlation over all (x, y) translations of a
given diffraction pattern pj can be efficiently computed us-
ing the fast Fourier transform [8]. Detection of several objects
can then be performed by iteratively solving sub-problems (9)
on the so-called residuals r, i.e., part of the data unexplained
by the currently detected diffraction-patterns. Residuals are
initially equal to data d. Each time a diffraction pattern ki
is found, the residuals are updated: r ← r − αCki as in
matching pursuit algorithm and its variants.

3. DIMENSIONALITY REDUCTION OF THE
DICTIONARY OF DIFFRACTION PATTERNS

The huge dimensionality of the dictionary of all possible
diffraction patterns K makes direct detection of objects in a
hologram a very hard task. Efficient computation of correla-
tions for all possible (x, y) translates considerably reduces the
required computational effort, yet the number of diffraction-
patterns to consider in the dictionary P is still very large:
n × p. It is therefore crucial to reduce the dimensionality of
the dictionary P for general applicability of the diffraction-
pattern matching method.

Rather than using the dictionary of geometrically-
centered diffraction-patterns P , we could consider a low-
dimensional approximation:

P ≈
k∑
i=1

uiσiv
t
i , (11)

where P is approximated by the best rank-k matrix as ob-
tained by the singular value decomposition (SVD) consid-
ering the singular vectors ui and vi associated with the k
largest singular values {σ1, . . . , σk}. Within this approxima-
tion, diffraction pattern pj is represented by the linear combi-
nation

∑
i βi,j ui, where coefficient βi,j is equal to σivi(j).

Vectors ui represent the modes of the diffraction-patterns.

(a) Diffraction-pattern matching approach

(b) Diffraction-pattern matching with reduced dictionary

Fig. 2. Calculation of the X-Y criteria slices during the ex-
haustive search, (a) without and (b) with SVD. Operator *
represents normalized weighted correlation. As shown in this
figure, the reconstruction using the approximated dictionary
is faster and more memory efficient than using the accurate
dictionary.

Using this approximation, the computation of correlation
terms in equation (10) becomes a linear combination of the
correlation of each of the k modes with the data (see Fig. 2):

d̄
t
Wkj ≈

k∑
i=1

βi,jd̄
t
Wui . (12)

In equation (12), expressions d̄t
Wui do not depend on the

considered diffraction-pattern kj and can thus be computed
once for all the diffraction-patterns. Using fast Fourier trans-
forms, (x, y) correlation maps for each of the k modes can be
pre-computed with a computational cost of order k×n log(n).
The correlation maps of the m × p diffraction-patterns can
then be derived by performing m × p linear combinations of
pre-computed correlation maps with a computational cost of
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order m× p× k × n. The denominator of (10) can either be
precomputed, or can be approximated using SVD.

It shall be noted that the time complexity of the greedy
algorithm presented in Sec. 2 is an order ofm p n log(n) with
mp >> k. Bigger parameter ranges increasemp but they do
not affect k accordingly, which shows the significance of the
time gain in the applications with big ranges for parameters
like depth and Radii of the objects.

4. EXPERIMENTAL RESULTS

Fig. 3. The study of error rate on object recognition for the toy
problem of digits’ holograms (see Sec. 4.1). (a) contains one
of the holograms of Sec. 4.1 for object 0 placed at 0.17m from
the sensor, (b) shows the error rates representing the discrimi-
nating power of approximated dictionaries for a fixed level of
noise with SNR ≈ 3.

In this section we report the results of our method on both
simulated and real holograms. The goal of this section is to
show how the low rank approximation of the dictionary af-
fects: (i) the error rate of object recognition, (ii) the estima-
tion accuracy, (iii) the computational costs. The implemented
method uses FFTW library and OpenMP to exploit multi-
threading on a six-core CPU for the calculations of the for-
ward and backward Fourier transforms and the models. GPU
acceleration can be used to decrease the time costs further
more. PROPACK [14] is used to calculate truncated SVD of
the dictionary using an iterative Lanczos method.

4.1. Illustration: recognition of digits in a hologram

The first Monte Carlo study was performed to determine the
pattern discrimination power of the greedy method as a func-
tion of the rank of the approximated dictionary. Considering
holograms containing white Gaussian noise with SNR a ≈ 3
(see Fig. 3-a), Fig. 3-b shows the number of modes required
for every digit to be classified and located. As shown in this
figure, all digits are classified and localized using only first 6
modes (i.e., error rate is 0). In this study, 50 holograms were
simulated for every digit. The setup parameters were chosen
to simulate the holograms captured by a 400×400-pixel cam-
era with pixel size of 20 µm and fill-factor of 0.7. The laser

wavelength was set to 0.532 µm. The depth position of digits
was chosen to be in the range of [0.15 0.2] meters.

It should be noted that when diffraction-patterns overlap,
diffraction-pattern matching is more difficult and more modes
are required to perform object identification. Therefore for
the hologram of Fig. 1 16 modes were necessary for correct
object recognition. The time gain for this hologram was 3,
regarding the relatively small dictionary.

4.2. Study of bias and standard deviation of estimated pa-
rameters

Fig. 4. (a): The experimental hologram of Sec. 4.3 captured
in the department of fluid mechanics and acoustics of Lyon
(LMFA), (b): same experimental hologram cleaned from the
in-field particles using the 5 first modes. The residual’s mag-
nitude is high due to the signature of the out-of-field particles
placed close to the borders.

Simulations were performed for a set of Monte Carlo
studies to check the accuracy of parameter estimation for dif-
ferent ranks of the approximated dictionary of opaque spher-
ical particles (i.e., droplets or bubbles). Comparison between
the bias and standard deviation of the results with the theoret-
ical Cramer-Rao lower bounds(CRLBs) [15] showed that the
first 50 modes are enough to assure that the greedy algorithm
results in minimum variance unbiased parameter estimators.
In this study the camera was considered to have 512 × 512
pixels with the pixel size of 7 µm and fill-factor of 0.7. The
laser wavelength was set to 0.532 µm. For the calculation of
SVD, the range of parameters Z was set to [0.1 0.3] m and
the range of radii was set to [60 100] µm. To check the bias
and standard deviation of the estimated parameters, 50 holo-
grams were simulated for a particle placed at the center of the
hologram and 50 holograms for a particle at the right bottom
corner of the sensor. The SNR was set to approximately 19.

4.3. Experimental Holograms of spherical particles

Another set of experiments involved object detection and pa-
rameter estimation from a video of captured holograms (see
Fig. 4-a). These holograms were captured of injected water
droplets at the department of fluid mechanics and acoustics of
Lyon (LMFA). The goal was to detect all spherical particles
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and estimate their 3D position and radius. The dictionary con-
tained 410 diffraction patterns and our experiments showed
that a rank 5 dictionary was accurate enough to detect and lo-
cate all the particles in the field of view of camera and clean
them successfully. The time gain using the approximated dic-
tionary (46 s) over the normal approach (342 s) was a factor
of 8. A sample cleaned hologram is shown in Fig. 4-b. The
droplets were generated by a piezoelectric jetting device man-
ufactured by MicroFab Technologies. This injector produces
mono-dispersed droplets with radii of 31 µm ± 0.5 µm. The
droplets were produced to be at distances ranging from 30 cm
to 48 cm of a 1024 × 1280 pixel camera with pixel size of
21.7 µm and fill-factor of 0.84. This imaging setup had a
magnification of 1.42 which resulted in the holograms with
an SNR of ≈ 16.

5. CONCLUSION

Signal processing approaches can be used in digital hologra-
phy for object recognition and volume reconstruction directly
from the hologram. These approaches exploit the diffraction
pattern dependencies on shape and position of the objects
to perform direct diffraction-pattern matching on the holo-
gram. In this paper we showed that reducing the rank of the
diffraction-pattern dictionary (using a dimensionality reduc-
tion method) can speedup the digital hologram reconstruction.
The calculation of the algorithm complexity shows that the
time gains of such methods depend on the application param-
eters, where bigger search spaces increase the time gain.

Our Monte Carlo studies on the application of spherical
objects have shown that the parameter estimation using a low
rank approximation of the dictionary is unbiased with a stan-
dard deviation comparable to the Cramer-Rao lower bounds.
We have also studied the discrimination power of the pat-
tern matching algorithm in terms of the approximation rank
for non-parametric objects, and we have shown that low rank
approximations give accurate object recognition and location
extraction. In the last study, we achieved a speedup rate of 8
on a video of experimental holograms of water droplets.
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