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ABSTRACT

This paper focuses on carrier frequency offset (CFO) estima-
tion in the presence of time-selective Rayleigh fading (i.e.,
Gaussian multiplicative noise) channel. The time-variant fad-
ing is modeled by considering the Jakes’ and the first order
autoregressive AR(1) correlation models. A high signal-to-
noise-ratio maximum likelihood (ML) estimators based on
the AR(1) correlation model and for slow-fading channels
are derived when the channel statistics are unknown. The
main objective is to reduce algorithm complexity to a single-
dimensional search on the CFO parameter alone. Closed-
form expressions of the Cramér-Rao lower bound (CRB) for
the CFO parameter alone are derived for fast-fading and slow-
fading channels. Approximate analytical expressions for the
CRB are derived for low and high SNR that enable the deriva-
tion of a number of properties that describe the bound’s de-
pendence on key parameters such as SNR, channel correla-
tion. Finally, simulation results illustrate the performance of
the estimators and confirm the validity of the theoretical anal-
ysis.

Index Terms— CFO estimation, ML estimator, Cramér
Rao bound, Time-varying fading channel, Jakes’ channel
model, AR1 channel model.

1. INTRODUCTION

Carrier frequency offset (CFO) estimation in the presence
of multiplicative noise is important for synchronization of
communications signals in the context of time-selective fad-
ing channels (e.g., [1, 2, 3]). The time-selective fading
is involved particularly in mobile wireless communications,
which causes Doppler spread [4]. On the other hand, the in-
stability of oscillators causes the CFO. These frequency bias
degrade the receiver performance greatly, thus it needs to
track and compensate these frequency bias in coherent com-
munications. Multiplicative noise models are also appropri-
ate in array processing when the source signal is spatially dis-
tributed [5], as well as for backscattered acoustic signals [6, 7]
and SAR imagery systems.

Various techniques have been proposed for carrier fre-
quency recovery (see e.g., [8, 9]). Among these, the class

of data-aided techniques (see e.g., [10, 11, 12]), which use
a training sequence for frequency offset estimation, become
popular because they can attain good performance with a
short training sequence. The data-aided techniques have been
developed for additive white Gaussian noise (AWGN) chan-
nels (see e.g., [12, 13]). However, the additive noise model
is not sufficiently representative in most practical applica-
tions. As an example, consider a digital communication sys-
tem with burst transmission using coherent signal detection
over a radio link where the transmitted signal is corrupted by
a time-varying multiplicative distortion. In such conditions,
frequency estimators based on additive Gaussian models do
not perform well, and a low-accuracy carrier frequency esti-
mation for the fading channel will cause serious performance
degradation.

Many data-aided CFO estimators have been proposed in
the presence of time-varying multiplicative noise distortions
[2, 3, 14, 15, 16], which are mainly classified as correlation-
based or periodogram-based estimators. The most popular
one, the so-called pulse-pair (PP) estimator originally pro-
posed by Benham et. al. in an application to Doppler spec-
trum estimation [17]. It has been shown that the correlation-
based methods show very good performance and it achieve
the Cramer-Rao bound (CRB) for the frequency estimate
[2, 3]) when the phase unwrapping problem is solved. How-
ever, the correlation-based estimators (e.g., [2, 3, 14]) need
to know the channel parameters (e.g., Doppler bandwidth of
the channel), and not take into account the statistical proper-
ties of the time-varying fading channel. Note that if channel
statistics are unknown to the estimator then a parametrization
of the time-varying channel is required.

It is well-known that the derivation of the CFO ML esti-
mator over an unknown time-selective Rayleigh fading (i.e.,
Gaussian multiplicative noise) channel is even more complex
since it requires a multidimensional optimization procedure.
In this paper we develop two high-SNR approximate CFO
ML estimators for time-selective Rayleigh fading and slow-
fading channels with unknown channel statistics. The fast-
fading ML estimator is derived based on a simplified AR(1)
correlation model. The main objective is to reduce estima-
tors complexity to a single-dimensional search on the CFO
parameter after deriving closed-form expressions of the ML
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estimates for the unknown channel and signal parameters. Ex-
act and approximate closed-form expressions for the CRB on
CFO estimation are derived for fast-fading and slow-fading
channels. In addition, attention is focused on data-aided (DA)
synchronization, wherein the transmitted symbol sequence is
known a priori.

The paper is organized as follows. Sec. 2 describes the
signal model, the Jakes’ and AR1 correlation models and
poses the estimation problem. Sec. 4 presents high-SNR ap-
proximate ML CFO estimator derived for fast fading chan-
nel and high-SNR approximate slow fading ML estimator is
presented in Section 5. In Sec. 6, exact and approximate
closed-form expressions for the CRB on CFO estimation are
derived for fast and slow fading fading channels. Finally, the
numerical results are analyzed in Sec. 7 and conclusions are
presented in Sec. 8.

2. MODELING AND PROBLEM FORMULATION

Consider the transmission of a linearly modulated signal over
flat Rayleigh fading channel. We assume Nyquist shaping and
ideal sample timing so that the inter-symbol interference at
each symbol spaced sampling instance can be ignored. In the
presence of frequency offset, the signals at the output of the
matched filter can be modeled as a complex signal as follows:

yk = akhke
j2πkf0 + nk, k = n0, . . . , n0 +N − 1 (2.1)

where {ak} is a sequence of a known symbols with |ak|2 = 1.
The deterministic unknown parameter f0 represents the car-
rier frequency offset normalized to the symbol rate. N is
the total number of received samples in the observation in-
terval. The processes hk and nk are the samples of the fading
gains and additive noise process, respectively. The noise sam-
ples are assumed to be independent and identically distributed
(IID) circular complex Gaussian with zero-mean and variance
σ2
n. Rayleigh fading is assumed and the fading process is nor-

malized so that hk is zero-mean circular complex Gaussian
with unknown variance σ2

h and correlation function given by:

RJh(m)
def
= E(hnh

∗
n−m) = σ2

hJ0(2πfdTm),
where J0(.) is the first kind 0th-order Bessel function, T is the
symbol period and fd denotes the maximum Doppler shift.
This is frequently referred to as the Jakes’ model [4]. The
signal-to-noise ratio (SNR) is defined as ρ def

=
σ2
h

σ2
n

.
It is, however, not feasible to directly apply the

Jakesḿodel in our computation for it leads to intractable so-
lutions. Alternatively, an AR(1) process can often be used
to approximate the Jakes’ model with satisfactory accuracy
(e.g. [1, 18]). Particularly, in this paper, an AR(1) process is
adopted, i.e.,

hk = γhk−1 +
√

1− γ2ek, (2.2)

here ek ∼ N (0, σ2
h) is the additive driving noise and where

γ
def
= J0(2πfdT ) is assumed to be unknown. The fading am-

plitude at time n is constrained to follow a sequence from a
known initial state, say h0:

hn = γnh0 +
√

1− γ2
n−1∑
k=0

γken−k. (2.3)

The correlation over m signalling intervals is given by

RAR
h (m) = E(hnh

∗
n+m) = σ2

hγ
|m|,

and it depends on the mobility environment (and on the sym-
bol time T ) at hand. Consequently, the covariance matrix for
the AR1 channel model can be written as

RAR
h = σ2

h



1 γ γ2 . . . γN−1

γ 1 γ . . . γN−2

γ2 γ 1 . . . γN−3

...
...

...
. . .

...

γN−1 γN−2 γN−3
. . . 1


(2.4)

We note that for γ = 0 the channel becomes an uncorrelated
fading process, and for γ = 1, the channel is simply a real-
ization of a single random variable (slow fading).

Collecting the samples of the received signal to form
a vector y

def
= (yn0

, . . . , yn0+N−1)T yields the following
model

y = AFh + n, (2.5)

where A
def
= Diag (an0

, . . . , an0+N−1), F
def
=

Diag
(
ej2πn0f0 , . . . , ej2π(n0+N−1)f0

)
, h

def
=

(hn0
, . . . , hn0+N−1)

T and n
def
= (nn0

, . . . , nn0+N−1)
T

is an N × 1 noise vector with covariance matrix σ2
nI. Since

the transmitted symbols ak are known, y is a zero-mean
complex Gaussian random vector, with correlation matrix
given by

Ry
def
= E(yyH) = AFRhF

HAH + σ2
nI, (2.6)

where Rh
def
= E(hhH) is the fading-channel correlation ma-

trix. The probability density function (PDF) of y is given by:

p(y;α) =
1

πN det(Ry)
e−y

HR−1
y y, (2.7)

where α = (f0,αn
T )T is an unknown parameter vector de-

pending on parameter of interest, f0, and a vector of nuisance
parameters αn

def
= (γ, σ2

h, σ
2
n)T .

The estimation problem can now be formulated as fol-
lows: Given the received signal y whose pdf (2.7), estimate
f0 in the presence of a vector nuisance parameters αn.

3. CFO ML ESTIMATORS

3.1. Fast fading

The direct maximization of the likelihood function (2.7) with
respect to the unknown parameter α def

= (f0,α
T
n )T is a diffi-

cult task. The straightforward approach for deriving the ML
solution to the problem is to try to concentrate (2.7) (where
(2.4) is used instead of the true channel correlation matrix in
the case of fast-fading channel) with respect to the nuisance
parameters, and to perform a search on the CFO parameter f0
and the parameters which cannot be concentrated.
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Using the fact that the diagonal matrices A and F are uni-
tary matrices1, the vector z

def
= FHAHy can be seen as a

unitary transformation of y. The concentrated log-likelihood
function of z proved in [20] by applying the chain rule2 can
be expressed as (after dropping the constant term)

L(αn; z)=ln(σ2
h + σ2

n) +
|z0|2

σ2
h + σ2

n

+ (N − 1) ln

(
σ2
h + σ2

n +
γ2σ4

h

σ2
h + σ2

n

)
(3.8)

+
1

σ2
h + σ2

n −
γ2σ4

h

σ2
h
+σ2

n

N−1∑
n=1

|zn − zn−1
γσ2

h

σ2
h + σ2

n

|2.

Note that the maximization of (3.8) is significantly compli-
cated by the presence of the nuisance parameters. However,
since we are interested in a simpler estimation procedure, we
resort to a high-SNR approximation. For high-SNR (σ2

n is
very small), (3.8) can be simplified by assuming that γ 6= 1

L(αhighn ; z) = ln(σ2
h) +

|z0|2

σ2
h

+ (N − 1) ln
(
σ2
h(1 + γ2)

)
+

1

σ2
h(1− γ2)

N−1∑
n=1

|zn − γzn−1|2, (3.9)

where αhighn
def
= (σh, γ)T is the nuisance parameters vector

after omitting σn from the nuisance parameters vector αn.
The following result proved in [20], shows that it is pos-

sible to reduce the optimization problem, under a high SNR
approximation, to a single-parameter search with respect to
the CFO parameter f0 only.

Result 1 For high SNR environment and with γ 6= 1, the joint
ML estimates that minimize the log-likelihood function (3.9)
are given by the following:
f̂0,ML is obtained by the minimizing with respect to f0

Ffa(f0; z) = ln(σ̂2
h,ML) +

|z0|2

σ̂2
h,ML

+ (N − 1) ln
(
σ̂2
h,ML(1 + γ̂2ML)

)
(3.10)

+
1

σ̂2
h,ML(1− γ̂2ML)

N−1∑
n=1

|zn − γ̂MLzn−1|2

where σ̂2
h,ML and γ̂ML are the ML estimates of the nuisance

parameters given by

γ̂ML = − k2,z(f0)

2k4,z(f0)
, (3.11)

σ̂2
h,ML =

1

N

(
k3,z(f0) +

1

1− γ̂2ML

(−γ̂MLk2,z(f0)

+ γ̂2MLk1,z(f0)
))
, (3.12)

where the frequency-dependent coefficients kl,z(f0), l =

1, ..., 4, are given by k1,z(f0)
def
=
∑N−1
n=1 (|zn|2 + |zn−1|2),

1The matrices A and F satisfying AAH = AHA = I and FHF =
FFH = I.

2The AR(1) process allows to use the chain rule, and has only a
limited memory of its own history for which p(zk|z0, . . . , zk−1;α) =
p(zk|zk−1;α).

k2,z(f0)
def
=

∑N−1
n=1 (z∗nzn−1 + z∗n−1zn), k3,z(f0)

def
=∑N−1

n=0 |zn|2 and k4,z(f0)
def
= k3,z(f0)− k1,z(f0).

The overall estimation procedure can be summarized as
follows. For each value of f0 in the search domain, the ML
estimates of γ and σ2

h are given by (3.11) and (3.12), respec-
tively. Substituting then the estimates of the nuisance pa-
rameters into (3.9) yields (3.10). The CFO estimate is that
value which maximizes (3.10). Thus, for high SNR, the nui-
sance parameters are given in closed-form expressions that
depend on the CFO parameter, reducing the search to a single-
parameter search only.

Note that the ML approach only requires maximizing
(3.10) with respect to a scalar f0, which can be efficiently im-
plemented using derivative-free uphill search methods such
as the Nelder-Mead algorithm3 [21].

Remark 1 It is well known that γ = J0(2πfdT ) ≈ 1 −
1
4 .(2πfdT )2 for fdT � 1. Therefore, using (3.11), the ap-
proximate ML estimate of the maximum Doppler shift, fd, can
be expressed as

f̂d,ML =
1

πT

√
1− γ̂ML.

3.2. Slow fading

In the sequel, the results for the fast fading channel will be
compared with those of the slow fading (i.e., with the fading
process remaining constant throughout the observation win-
dow). We prove in [20] that the negative log-likelihood func-
tion for slow fading channel can be expressed as

Lsl(α
sl; z̃)= (N − 1) ln(σ2

n) + ln(Nσ2
h + σ2

n) (3.13)

+
1

σ2
n

N∑
n=0

|z̃n|2 −
σ2
h

(Nσ2
h + σ2

n)σ2
n

∣∣∣∣∣
N∑
n=0

z̃n

∣∣∣∣∣
2

.

with z̃
def
= (z̃n, . . . , z̃N−1)T where z̃n

def
= a∗ne

−j2πnf0yn
and where yn = hane

j2πnf0 + nn with h ∼ N (0, σ2
h).

αsl
def
= (f0,α

slT
n )T and where αsln

def
= (σ2

h, σ
2
n)T is an un-

known parameter vector of nuisance parameters. We prove in
[20], the following result.

Result 2 For high SNR environment, the CFO ML estimate
f̂sl0,ML that minimize the log-likelihood function (3.13) is ob-
tained by minimizing with respect to f0 only the following
function

Fsl(f0; z̃) =

∣∣∣∣∣ 1

N

N∑
n=0

z̃n

∣∣∣∣∣
2

. (3.14)

4. CRB EXPRESSIONS

The following result is proved in [20] summarized by the fol-
lowing result.

3The Nelder-Mead algorithm has already been incorporated in the func-
tion “fminsearch” in MATLAB R©.
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Result 3 The DA CRB for CFO parameter over time-
selective fast fading channel is given by:

CRBDA(fo) =
1

8π2ρ2
1

Tr((R′hR̄
−1
h N0)(N0R′h −R′hN0))

,

where R′h
def
= 1

σ2
h
Rh, N0

def
= Diag(n0, . . . , n0 +N − 1) and

R̄h
def
= ρR′h + I.

Note that this result is valid for any type of fading corre-
lation (e.g., Jakes, AR) when the fading process is complex
normal and of zero mean. We have also observed numerically
that the CRB (4.15) does not depends on the time n0 at which
the first sample is taken.

In the special cases of slow fading4 (i.e., γ = 1 andRh =
σ2
h11

T ), result 3 can be extended to the following result.

Result 4 The DA CRB for CFO over slow fading channel is
given by

CRBSlow(f0) = MCRB(f0)
Nρ+ 1

Nρ

1

1− αn0

, (4.15)

where
MCRB(f0)

def
=

1

8π2ρ
∑n0+N−1
n=n0

n2
,

is the modified CRB (MCRB) when the fading channel is as-
sumed constant over the observation interval [19]. The coef-

ficient αn0
is defined as αn0

def
=

(
∑n0+N−1

n=n0
n)2∑n0+N−1

n=n0
n2 .

It is clear that for sufficiently high SNR, the bound (4.15)
is approximately inversely proportional to SNR (decreasing
rapidly with SNR), and therefore tends to zero for asymptot-
ically high SNR. Moreover, when the CRB is analyzed rela-
tive to the middle of the signal vector (i.e., n0 = −N−12 ), αn0

equal to zero, and then the CRB (4.15) becomes

CRBslow(f0) = MCRB(f0)
Nρ+ 1

Nρ
, (4.16)

where
MCRB(f0) =

6

(2π)2N(N2 − 1)ρ
. (4.17)

Using AR correlation model (where (2.4) is used instead
of the true channel correlation matrix), we prove in [20] that
(4.15) at high SNR can be simplified as

CRBhigh(fo) =
1− γ2

γ2
1

8π2(N − 1)
. (4.18)

5. SIMULATION RESULTS

This section presents numerical examples that illustrate the
accuracy of the derived fast-fading and slow-fading ML esti-
mators and compared with the derived fast-fading and slow-
fading CRBs as a function of SNR and doppler-time product.

The channel is simulated according to AR1 correlation
model [1, 4] with doppler-time product of fdT . The symbols
{an} are assumed known at the receiver. In all simulations,
we set f0 = 0.03,N = 100 and 1000 Monte Carlo trials were

41 is the all-one (N × 1) vector.

run to obtain the empirical mean squares error (MSE) of the
estimates.

Fig.1 plot the derived exact fast-fading and slow-fading
CRBs on CFO estimation, the high-SNR CRB (4.18) and low-
SNR approximates CRB calculated in [20], the MCRB calcu-
lated by (4.17), and the Monte Carlo results for the fast-fading
and slow-fading ML estimators derived in results 1 and 2, re-
spectively. It can be seen that the exact fast-fading and slow-
fading CRBs provides an exact match to the Monte Carlo
MSE results associated with the high-SNR ML estimators for
both fast-fading and slow-fading channels. Note also, that al-
though the slow-fading CFO ML estimate presented in result
2 for high SNR, the performance of this estimate reaches the
slow-fading CRB for a large range of SNR up to−10 dB. This
figure shows that for sufficiently high SNR, the SNR does not
have a effect on the fast-fading bound on CFO estimation as
shown the equation (4.18).

−30 −20 −10 0 10 20 30
10

−8

10
−6

10
−4

10
−2

10
0

 

 

C
R

B
(f

0
)

SNR (dB)

Exact CRB with fast fading AR1 model

High SNR approx. CRB with fast fading AR1 model

Low SNR approx. CRB with fast fading AR1 model

Exact CRB with slow fading channel

ML estimator−fast fading AR1 model−High SNR approx.

ML estimator−slow fading−High SNR approx.

MCRB

Fig.1 Exact and approximate CFO CRBs over fast-fading AR1 (with
fdT = 0.1) and slow-fading channels, MCRB, and estimated MSEs
E(f̂0,ML−f0)2 given by the high-SNR approximate ML estimators, versus
fdT for SNR= 15dB.

We also see from this figure, the validity of the high and
low SNR fast-fading theoretical approximations of the CRBs
which are very close to the true CRB, and that the MCRB and
slow-fading CRB on CFO estimation are identical except for
low SNR.

Fig.2 shows the behavior of the CRBs versus the doppler-
time product fdT with SNR = 15 dB. We observe the fast-
fading CRB of the AR1 CFO estimation increases as the time-
Doppler product increases. To understand why, recall that the
AR1 high SNR approximation of the CRB given by (4.18)
depends on the term γ2/(1 − γ2) which, for γ ∈ [0, 1[, is
a monotonically increasing function of γ. The time-doppler
product has a significant effect on the bound. We also ob-
serve that the fast-fading CRB on CFO estimation remains
identical to the slow-fading CRB on CFO estimation up to
fdT = 0.0001 (where the channel is slowly time-varying).
Note also that the MSE results associated with the high-SNR
fast-fading ML estimator reaches the fast-fading CRB except
when fdT decreases. This is because the fast-fading AR1 ML
estimator was derived under the assumption that γ 6= 1 (γ = 1
implies fdT = 0, the slow-fading case). Thus, the estimator

4
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will not produce a valid result as γ approaches 1. We also see
from this figure that the high SNR approximation of the fast-
fading CRB (4.18) is very close to the exact fast-fading CRB
except when the channels becomes slowly time-varying.

10
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10
−4

10
−3

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

 

 

f
d
T

(C
R

B
(f

0
))

0
.5

Exact CRB with fast fading AR1 model

High SNR approx. CRB with fast fading AR1 model

Exact CRB with slow fading channel

ML estimator − fast fading AR1 model − High SNR approx.

Fig.2 Exact and High-SNR approximate CFO CRBs over fast-fading AR1
and slow-fading channels, and estimated MSE E( ˆf0,ML − f0)2 given by
the high-SNR approximate ML estimator versus fdT with SNR= 15dB.

6. CONCLUSION
This paper considers the estimation of the carrier frequency
offset in the presence of time-varying Rayleigh flat fading
channels. We have derived fast-fading and slow-fading ML
estimators for estimating CFO parameter with unknown chan-
nel parameters. The fast-fading ML approach was based on a
mismatched AR(1) channel-correlation model upon which a
high SNR CFO estimator is derived. The fast-fading ML esti-
mator was compressed into a single-parameter search over the
CFO parameter alone. A closed-form expression of the DA
CRB for CFO parameter alone are derived for fast and slow
fading channels. Approximate analytical expressions for the
CRB of the CFO parameter over low and high SNR are de-
rived. Some properties that highlight how the bound depends
on key parameters such as SNR and time-Doppler product
are presented. The performance of the fast-fading and slow-
fading CFO estimators are analyzed through simulations and
compared with the CRB.
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