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ABSTRACT

In this paper, we propose a modification to dyadic sorting

scheme used for the permutation problem in convolutive blind

source separation. In the frequency domain, the problem of

separation of sources can be reduced to multiple instanta-

neous problems, which are easily solvable using independent

component analysis. However, this simplified method leads

to the problem of correctly aligning and scaling of the single

frequency bins. These ambiguities need to be solved before

the transformation to the time domain, as otherwise the sep-

aration process will fail. In this paper we combine dyadic

sorting with an optimized way of calculation of correlation

coefficients by using spectral summation. The improved per-

formance will we shown on real world examples.

Index Terms— Blind source separation, convolutive mix-

ture, frequency-domain ICA, permutation problem

1. INTRODUCTION

In the case of linear and instantaneous mixtures of non-

gaussian signals, blind separation may be performed using

the Independent Component Analysis (ICA). For this case,

numerous algorithms have been proposed [1, 2, 3]. The meth-

ods are called blind, as typically neither the sources nor the

mixing system is known.

When dealing with real-world mixtures of acoustic sig-

nals, as for example speech, this simple approach fails. Due

to the finite speed of sound and multiple reflections in closed

rooms, the signals arrive multiple times with different lags.

This mixing process is convolutive, and can be modeled using

FIR filters. In typical scenarios, as for example office rooms,

the length of these mixing filters can reach up to several thou-

sand coefficients. Such mixtures can be separated using a set

of unmixing FIR filters with at least the same length.

These unmixing filters can be calculated directly in the

time domain [4, 5], but this method suffers form high com-

putational load and often poor convergence. Therefore, an

other approach is widely used: With the transformation to

the time-frequency domain the convolution becomes a mul-

tiplication, and an instantaneous ICA algorithm can be used

independently in each frequency bin. But this simplification

has a major disadvantage, as each bin can be arbitrarily scaled

and permuted. These ambiguities needs to be solved before

the transformation to the time domain, as otherwise the sepa-

ration process will fail.

The correction of scaling is needed, as otherwise only a

filtered version is recovered. A typical solution is the min-

imal distortion principle [6] or inverse postfilters [7]. This

method accepts the filtering done by the mixing system with-

out adding new distortions. Other approaches solve the scal-

ing ambiguity with the aim of filter shortening [8] or shaping

[9, 10].

The correction of the random permutation of the discrete

frequency bins is even more important as otherwise the whole

separation process will fail. The depermutation algorithms

can be organized in two major groups. The first group rely on

the properties of the unmixing matrices. For example, they

can be interpreted as beamformer, and the direction informa-

tion is used for a depermutation criterion [11]. Alternative

formulations evaluate directivity patterns [12, 13] or time dif-

ference of arrivals [14, 15] As these approaches assume spe-

cific directions for the sources, they usually fail in the pres-

ence of high reverberation and noise. In [16] the authors ex-

ploit the sparsity of the unmixing filters. However, in typical

real world examples, only the first part of a filter exhibits this

property.

The second group of algorithms uses the alike time struc-

ture of the separated bins. The early approaches often ex-

ploited the assumption of high correlation between neighbor-

ing bins [7]. This method has been extended in [17, 18] to

use activity patterns. For speech signals, which are sparse in

the time-frequency domain, they usually yield a better deper-

mutation criterion than the plain correlation technique. The

dyadic sorting, as proposed in [19], also allows for a more

robust depermutation scheme. The dyadic sorting has also

been used in [20] with combination of a sparsity criterion.

Other approaches include a statistical modeling of the single

bins using the generalized Gaussian distribution. Small dif-

ferences of the parameters lead to a depermutation criterion

in [21] and [22].

In this work we propose a new approach, which is based

on the modified method from [20], where a full time domain

representation of the single bins has been used. With the
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method of spectral summation only one coefficient needs to

be calculated for each depermutation decision, which leads to

a higher robustness. The performance will be even more im-

proved by employing the activity patterns as in [17, 18] and

will be shown on real world examples.

2. MODEL AND METHODS

The instantaneous mixing and unmixing process is the basis

for the convolutive one. Both methods will be described in

the following.

2.1. BSS for instantaneous mixtures

The mixing of N sources into N observations can modeled

by an N × N matrix A. With the assumption of negli-

gible measurement noise, the observation signals x(n) =
[x1(n), . . . , xN (n)]T are given by

x(n) = A · s(n). (1)

with s(n) = [s1(n), . . . , sN (n)]T being the source vector.

The separation is again a multiplication with a matrix B:

y(n) = B · x(n) (2)

with y(n) = [y1(n), . . . , yN(n)]T . The estimation of B is

solely based on the observed process x(n). With BA = DΠ

the separation is successful with D and Π standing for the

two ambiguities of BSS: Π being a permutation matrix mod-

els the arbitrary order of the signals and D being a diagonal

matrix stands for the unknown scaling of the outputs.

For the separation, we use the well known gradient-based

update rule [1]

Bk+1 = Bk + ∆Bk (3)

with

∆Bk = µk(I − E
{

g(y)yT
}

)Bk. (4)

The term g(y) = (g1(y1), . . . gn(yn)) is a component-

wise vector function of nonlinear score functions gi(si) =
−p′i(si)/pi(si) where pi(si) are the assumed source proba-

bility densities. These should be known or at least well ap-

proximated in order to achieve good separation performance

[23].

2.2. Convolutive mixtures

In real-world acoustic scenarios it is necessary to consider re-

verberation. In this case, the mixing system can be modeled

by FIR filters of length L. Depending on the reverberation

time and sampling rate, L can reach several thousand taps.

The convolutive mixing model reads

x(n) = H(n) ∗ s(n) =

L−1
∑

l=0

H(l)s(n − l) (5)

Mixing system H Unmixing System W

h11(n)

h12(n)

w11(n)

w12(n)

w21(n)

w22(n)

x1(n)

x2(n)

s1(n) y1(n)

y2(n)s2(n)

h21(n)

h22(n)

Fig. 1. BSS model with two sources and sensors.

where H(n) is a sequence of N × N matrices containing the

impulse responses of the mixing channels. For the separation

we use FIR filters of length M and obtain

y(n) = W(n) ∗ x(n) =

M−1
∑

l=0

W(l)x(n − l) (6)

with W(n) containing the unmixing coefficients. Fig. 1

shows the scenario for two sources and sensors.

In order to simplify the separation process, the transfor-

mation to the time-frequency domain is often used. Using the

short-time Fourier transform (STFT), the convolution approx-

imately becomes a multiplication [24]:

Y (ωk, τ) = W (ωk)X(ωk, τ), k = 0, 1, . . . , K − 1, (7)

where K is the FFT length. This approach allows for an inde-

pendent estimation of an unmixing matrix in each frequency

bin by an instantaneous ICA. The drawback is the possible

permutation and arbitrary scaling in each frequency bin:

Y (ωk, τ) = W (ωk)X(ωk, τ) = D(ωk)Π(ωk)S(ωk, τ)
(8)

where Π(ω) is a frequency-dependent permutation matrix

and D(ω) an arbitrary diagonal scaling matrix.

Without correction of scaling, a filtered version of the

sources is recovered. One solution is the minimal distortion

principle [6], which does not add any new distortion while

accepting the filtering done by the mixing system. The un-

mixing matrix reads

W ′(ω) = dg(W−1(ω)) · W (ω) (9)

with dg(·) returning the argument with all off-diagonal ele-

ments set to zero.

Without correction of the permutation, different signals

will be restored at different frequencies and the whole process

will fail. In the next section we will review the correlation

approach for solving the permutation problem and the dyadic

scheme improvements.

3. DEPERMUTATION ALGORITHMS

In this section we describe some basic depermutation algo-

rithms and their extensions. Then, a new combination with an

improved robustness will be derived.
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3.1. Correlation approach

Many depermutation algorithms are based on the statistics of

the separated signals. For example, the assumption of high

correlation of envelopes of neighboring bins yields a simple

depermutation criterion [7]. With V (ω, τ) = |Y (ω, τ)|, the

correlation between two bins k and l is defined as

ρqp(ωk, ωl) =

∑T −1

τ=0
Vq(ωk, τ)Vp(ωl, τ)

√

∑

T −1

τ=0
Vq

2(ωk, τ)
√

∑

T −1

τ=0
Vp

2(ωl, τ)

(10)

where p, q are the indices of the separated signals, Vq(ωk, τ)
is the q-th element of V (ωk, τ), and T is the number of

frames. The alignment of the bins is made on the basis of the

ratio

rkl =
ρpp(ωk, ωl) + ρqq(ωk, ωl)

ρpq(ωk, ωl) + ρqp(ωk, ωl)
. (11)

With rkl > 1 the bins are assumed to be correctly aligned and

otherwise a permutation has occurred. The simple method,

where consecutive bins are examined is not robust, as single

wrong permutations lead to whole blocks of falsely permuted

bins.

3.2. Dyadic sorting

An improvement to the simple sequential depermutation

which uses dyadic sorting has been proposed in [19]. This

method compares at the first stage neighboring bins using

(11). After this initial pairwise alignment, those pairs are

again compared in the next stage. This approach is repeated

in the next stage with the quadruples and so on, until all fre-

quency bins have been sorted. An example of this scheme

is shown in Fig. 2, where eight bins are sorted. The main

assumption of this method is that single wrong permutations,

which may occur at lower stages, do not interfere at higher

stages.

Still, in the work of [19], the depermutation at higher

stages is essentially based on the correlation of the single bins

within the larger blocks. With the correlation assumption not

always holding between more distant frequency bins and by

simple averaging of rkl for multiple bins, the depermutation

is not robust.

In [20] a modification of the dyadic sorting has been in-

troduced. Beside the use of a sparsity criterion, an improve-

ment to the calculation of the ratio rkl has been proposed.

Here, the coefficients are calculated on the time represen-

tation z(ωab, n) of the bins in the frequency range [a, b] of

Y (ω, τ). Using this time representation allows for calculation

of a single coefficient rkl for a whole range of frequency bins.

This approach avoids the problematic averaging as used in

[19]. By consecutive depermutation and summation of pairs

which represent whole blocks of frequency bins, the proce-

dure yields, besides the permutation information, also the re-

constructed signals.

3.3. Activity patterns

In [17, 18] an alternative method to the correlation of the en-

velopes has been proposed. Here, the authors exploit the spar-

sity of speech signals, and compute the dominance of the i-th
single separated signal as

powRatioi(ωk, τ) =
‖wi(ωk)yi(ωk, τ)‖2

∑N

k=1
‖wk(ωk)yk(ωk, τ)‖2

(12)

The values of these activity patterns are normalized to 0 ≤
powRatioi ≤ 1. A value of approximately one indicates a

dominance of the given signal, while low values denote the

dominance of some other signals. The comparison of activ-

ity patterns instead of envelopes by (10) and (11) is usually

more robust. However, this assumption is violated when one

signal is dominant the whole time. This can be problematic

for speech signals, which usually have no energy below the

fundamental frequency. An example will be given in the ex-

periments section.

In [17, 18] the depermutation algorithm is based on calcu-

lation of centroids which roughly represent the average activ-

ity pattern for a signal. Alternatively, the authors also propose

a two stage algorithm with multiple centroids which are opti-

mized to represent parts of the signals.

3.4. New algorithm

Here, we propose to combine the above presentend methods

in a new way. The main idea is to use the dyadic sorting, but

with some modifications in order to achieve more robustness.

The first modification is the calculation of rkl using time

domain representations of the frequency bins in a similar way

as in [20]. These representations can be computed using a

non-decimating DFT-filter bank. By using the method of

spectral summation, the time representation of a block of bins

can be calculated by a simple summation

z(ωab, τ) =
b

∑

k=a

Y (ωk, τ) (13)

and the envelope is given by v(ωab, τ) = ‖z(ωab, τ)‖. De-

pending on the analysis window of the DFT-filter bank, some

previous modulations of the single bins may be needed.

The second modification is the use of activity patterns as

proposed in [17] instead of the envelopes of the signals. Here,

we calculate the activity of the restored bandpass signals as

powRatioi(ωab, τ) =
‖zi(ωab, τ)‖2

∑N

k=1
‖zk(ωab, τ)‖2

(14)

Using the modified dyadic sorting, every depermutation

decision is based on one coefficient, which makes it more ro-

bust than the averaging in the original one. Additionally, the

calculation of centroids and the clustering of the frequency

bins as in [17] can be avoided.
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After the calculation of all stages of the dyadic sorting

scheme, the separated signals can be obtained from the real

part of the last summation. Additionally, the track keeping of

the single decisions yields the discrete permutation informa-

tion, which can be used for comparison with other algorithms.

4. EXPERIMENTS

The experiments using the proposed algorithm have been per-

formed using real world data available at [25] and [26]. The

setup was chosen to be similar to that in [20] and [11]. With

a sampling rate of 8 kHz, the FFT length was chosen to be

8192 and a 2048 point hann analysis window has been used.

The first dataset contains two speech signals (one male,

one female) in a low reverberant room. The separation in

the ICA stage is successful and non-blind depermutation al-

gorithm results in a very good separation ratio of 18.4 dB as

shown in Table 1. With the low reverberation, the direction

of arrival approach and the αβ-algorithm from [21] are both

able to depermute almost all bins, and the separation perfor-

mance is almost as good as in the non-blind case. The sparsity

dyadic depermutation from [20] is able to depermute most of

the bins, and has a separation performance of 15.4 dB. The

plain dyadic sorting based on correlation fails. The proposed

algorithm is able to depermute almost all bins correctly. Close

inspection shows, that merely some bins in the lowest rage are

mixed up. Below 110 Hz, where both signals have no mean-

ingful energy, the wrong permutations have no impact. In the

range between 110 and 175 Hz only the male signal has some

significant energy and therefore is dominant the whole time.

Unfortunately, as stated in section 3.3, this contradicts the as-

sumptions needed for the sorting using activity pattern. The

result is a permutation in these frequencies and a quite low

performance of 8.3 dB as shown in first row of Table 1. By

simply removing these frequencies from the results, the over-

all performance increases to 19.1 dB. Although this is not a

completely fair comparison, it shows, that the sorting of the

other frequency bins is very good.

The second dataset is recorded in a higher reverberant

room. In this case the direction of arrival approach fails, as

the assumption of the single direction for every source is not

valid. The dyadic sorting scheme from [19] based on correla-

tion also fails. The same is true for the αβ-Algorithm.

The sparsity based approach form [20] performs quite

well with 8.1 dB separation performance. The new proposed

algorithm is also able to depermute most of the bins and has a

similar performance with 8.2 dB. As both signals have similar

energy profile in the lower frequencies, the above mentioned

modification do not yield any improvements.

5. CONCLUSIONS

In this paper we proposed a modification to the dyadic sort-

ing scheme used for the permutation problem in the convolu-

Table 1. Comparison of the results for different depermu-

tation algorithms in terms of separation performance in dB.

Dataset 1 is taken from [25]. Dataset 2 is recorded in higher

reverberant room [26].

Algorithm Dataset 1 Dataset 2

Proposed (plain) 8.3 8.2

Proposed (modified) 19.1 8.3

Sparsity approach [20] 15.4 8.1

Dyadic sorting [19] 2.7 3.0

DOA-Approach [11] 17.3 3.4

αβ-Algorithm [21] 18.4 0.3

Non blind 18.4 9.4

tive blind source separation. The new criterion uses activity

patterns instead of correlation of envelopes and a modified

dyadic sorting method, where only one coefficient is used for

a depermutation decision. The performance has been shown

on real world examples.
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