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ABSTRACT 
 
This paper describes a hands-free speech/sound recognition 
system developed and evaluated in the framework of the 
CompanionAble European Project. The system is intended 
to work continuously on a distant wireless microphone and 
detect not only vocal commands but also everyday life 
sounds. The proposed architecture and the description of 
each module are outlined. In order to have good recognition 
and rejection rates, some constraints were defined for the 
user and the vocabulary was limited. First results are 
presented; currently project trials are underway. 
 

Index Terms— speech recognition, sound processing, 
sound recognition, domotics. 
 

1. INTRODUCTION 
 
The CompanionAble European project aims at combining 
smart home functionalities with mobile robot abilities for 
dependent people. The robot is the front-end of the domotic 
system (turning on/off the lights, shutting/opening the 
curtains, playing/stopping music, etc) as well as an everyday 
helper. Supported by external sensors in the house (infra red 
sensors, door opening detectors, etc) and internal data 
(camera, sonar, etc), it’s an assistant reacting to predefined 
scenarios (homecoming, video call, etc) or defined by the 
user himself (task reminder, pill dispenser, etc). 
To achieve such variety of tasks, the device is equipped with 
a touch screen. A mobile tablet and a static screen on the 
kitchen wall are also available. These are the three means to 
access the common graphical user interface of the system. 
Esigetel and the Mines-Télécom institute gave the robot its 
vocal interaction ability. A list of domotic commands have 
been extracted from practical experiments with end users. 
Other applications, for instance the agenda, the cognitive 
training or the robot control are also accessed via vocal 
commands. In both cases, commands are not only words but 
full natural language sentences. 
Lots of projects were about speech recognition; current 
commercial systems show us how the vocal interaction may 
be widely available in a near future. However, our work 
tries to solve the issues related to the distance to the 

microphone. In our configuration, we use a single 
microphone on top of the robot which can drive anywhere in 
the one-floor house. The noise environment is also 
unrestricted and traditional. Noise subtraction methods with 
dedicated microphone recording hypothetical noise sources 
are difficult to be applied to this real time changing 
environment. 
The CompanionAble project is further detailed in the second 
part of this paper. Sections 3 and 4 are about the sound 
processing and classification process, then, in section 5, the 
speech recognition system is described. Section 6 presents 
the first evaluations. Conclusions and perspectives drawn 
from this work are presented in the final part. 
 

2. COMPANIONABLE 
 
CompanionAble stands for Integrated Cognitive Assistive & 
Domotic Companion Robotic Systems for Ability & 
Security. This project is funded by the European 
commission and is composed by  18 academic and industrial 
partners. Partners are from France, Germany, Spain, Austria, 
Belgium, the Netherlands and the United-Kingdom. The 
main objectives are: 

- To combine mobile companion robot ability with 
smart home functionalities 

- To support social connection for dependent people 
- To improve the quality of life and the autonomy of 

elderly people 
Esigetel and the Mines-Telecom institute are leaders, each, 
to develop a vocal interaction and a multimodal distress 
situation detector. They take part in the person localization 
within the house as well. This paper focuses on the acoustic 
work. 
Currently, the project is tested by end users in SmH 
Eindhoven (Netherlands) and LabinHam in Gits (Belgium). 
They are invited to try the whole system for several 
consecutive days. 
 

3. SOUND PROCESSING ARCHITECTURE 
 
The sound is acquired continuously through two parallel 
systems: a first one which is able to detect and classify 
sound events between existing sound classes; another one  
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5.2. Speech/sounds classification 
 
A speech recognition engine such as Julius search for the 
closest sequence of words matching the input audio 
observations given the probabilities contained in the 
acoustic model and in the language model. One may add a 
garbage model which will be the default match for unknown 
observation sequences or sub-sequences. In this application, 
every input is matched with a sequence of words. Thus 
sounds are processed as they were speech and a word 
sequence is returned. The sound classification prevents this 
to happen by discarding speech recognition results that 
occur while the stream has been classified as sound. It’s a 
real-time process in parallel of the speech recognition one. 
 
5.3. Acoustic adaptation 
 
Acoustic adaptation methods have been studied at the 
earliest stage of the project [4]. Two adaptation methods 
were compared, namely: Maximum A Posteriori (MAP) and 
Maximum Likelihood Linear Regression (MLLR). 
A language model was trained on a corpus of 57500 
sentences derived from practical experiments and 
paraphrasing. The speaker is the same for the whole study, 
she has been previously recorded and the audio files are 
played through a loudspeaker. As expected, as only 10 
phonetically balanced sentences are used, MLLR adaptation 
is the most suited technique. Without adaptation, 60% of the 
Julius’ transcriptions are correct while this rate reach 70% 
with MAP adaptation and 73% with MLLR adaptation. 
Users go through MLLR adaptation before they use the 
system. 
 
5.4. Language model combination 
 
The first version of the speech recognition module was 
based on a single N-gram model trained on a 57658- 
sentence corpus. The acoustic model was adapted to fit the 
voice characteristics of the users using the MLLR method. 
This first system presented too much false positives, i.e. 
unwanted commands, when put to practical tests.  
In order to improve both the recognition and rejection rates, 
a filter, described next, was implemented.  
The dialog is based on frames [5]. These frames contain 
sub-dialogue graphs and transitions between states are 
triggered by the robot internal state/variables and the user 
inputs (vocal commands, buttons or/and sensors). A frame is 
enabled when at least one of its activation conditions is 
fulfilled; these are the same kinds of variables than the intra-
frames ones. Thus one can build a dialogue hierarchy: the 
root frame which is initially enabled contains all the 
activation events to enable the sub frames and terminal 
states allow the sub frames to hand over the control to the 
main frame. 
The sub frames have been clustered within eight classes. 
Each class lists all the vocal commands which are allowed 

and can be interpreted in the compound frames. A language 
model is build from those lists. 
A 9th language model is trained on the activation commands 
and is associated to the main frame. 
Even while the speech recognition module doesn’t receive 
information about the state of the dialogue, nine instances of 
the recognition engine run at the same time and deliver 
transcriptions of the input audio stream. 
This language model selection process improves the good 
recognition rates for the application commands but on the 
other hand doesn’t solve the rejection issues for out-of-
application sentences. 
 
5.5. Similarity test 
 
Similarity between two recognizers’ hypothesis is an 
extended Levenshtein distance. This is the total number of 
operation (substitution, deletion, insertion) to transform a 
sentence in another one. Furthermore it is normalized with 
the count of word in the sentences. Depending of the 
relative value of this distance, given a threshold, the 
hypothesis recognized by an engine fed with a specific 
language model is accepted or discarded. This test is used 
to: 

- Confirm good recognition: a well recognized 
command according to both the general decoder 
and the specific decoder is validated. The exact 
specific decoder’s hypothesis is sent 

- Reject wrong hypothesis: a command recognized 
only by the general decoder is rejected. 

- Correct partially correct hypothesis: a command 
recognized by a specific decoder while the general 
decoder outputs a close match is corrected: the 
specific hypothesis is sent 

 
The general language model must, in this setup, recognize 
the sequences of word contained in the specific language 
models. One needs to add the whole set of commands in the 
training corpus of such a general model. We introduced a 
weight for these additional sentences which has been 
experimentally defined to be 1000: the commands were 
added 1000 times. 
Finally, the test is not effective between one hypothesis for 
each decoder. We found out that it is better to use the n-best 
ones; it improves the good recognition rate: 

- One hypothesis is outputted for specific decoder 
because of the size of their language model   

- Several hypothesis (3 in our application) are 
produced by the general decoder and then fed to 
the similarity test 

All this improvements were implemented. A first evaluation 
of those is presented next. 
 

6. EVALUATIONS 
 
A test corpus has been recorded in SmH with 5 speakers. 
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Music 0 0 
Crowd 0 3.64 

 
Table 5. Recognition rate and false-positive rate for out-of-application commands 

 
System Recognition rate False-positives rate 

Wash machine 40 0 
Dutch speaker 60 0 
Music 20 0 
Crowd 60 0 

 
Table 6. Recognition rate and false-positive rate for mixed commands 

 
 

7. CONCLUSIONS AND PESPECTIVES 
 
The set up presented on this paper aims at providing spoken 
input for a companion robot within a smart home 
environment. As the robot is always on, so is the speech 
recognizer. Given these constraints, the most important 
characteristic to keep in mind is the robustness of the 
recognition. This combines both a good recognition rate but 
also accurate rejection criteria.  
A trade-off between these two aspects has to be found. Is it 
acceptable to erroneously recognize a command?  Can the 
user be asked to repeat utterances? During trials, it has been 
noticed that false positives could mean trouble and disturb 
the user. To solve this issue, the command/sentence set to be 
recognized has been restricted, this yields two other 
problems. Intended users are elderly and dependant people 
who get some trouble remembering specific commands. 
Furthermore, they could get quickly upset if the robot 
doesn’t recognize their orders and think that this is useless, 
ignoring this functionality.   
We proposed to experiment a combination of language 
models to improve the system accuracy.  
A new general language model has been built from a read 
Dutch subset of the CGN corpus. Let’s assume that it is able 
to recognize any Dutch utterances. Then another pass works 
on a restricted specific model with close vocabulary. The 
similarity between both resulting sentences, computed as a 
variation of the Levenshtein distance, behaves as a filter for 
acceptation/rejection.  
A closer collaboration with the dialog manager would also 
bring more ways of refinement and filtering. The dialog 
manager of the CompanionAble project implemented in the 
companion robot follows a finite state automaton clustered 
in frames. Except for the root/main state which activates 
sub-frames and so is always active, we can select a specific 
language model built from acceptable sentences given a 
frame. Thus 10 restricted models have been created, one for 
each frame and one for the “main” frame. The dialog 
manager listens to the recognition process outputs, filtering 
them with what the current state(s) allow(s).  
This more elaborated system proved to be robust enough to 
allow a good recognition rate as well as limited false 
positive cases. However, informal experiments showed its 

weakness when it comes to reject short commands, i.e. one-
word sentences. The use of the robot’s attention with the 
trigger word prevents this to happen. 
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