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ABSTRACT

We present a method aiming at facilitating musical audio
summarization by organizing the signal into a set of possibly
recurring parts, such that inclusion of an expert from each
part would be adequate to compactly summarize the whole
audio signal. Crucial to the success of the grouping segments
into parts is the underlying distance metric, which depends
on the feature space and should provide distances that are low
for segments of the same audio part and high for segments of
different audio parts. Starting with a general purpose audio
feature space, we use the information from the sequential
structure of audio signals, in order to estimate in a completely
unsupervised way a Fischer subspace with discriminant char-
acteristics for the particular audio signal. The derived feature
space is used in a segmentation-clustering system based on
fuzzy clustering, HMM and k-NN probability estimation.
The experimental results show an almost 10% performance
gain when adopting the Fisher subspace with respect to using
the original feature space.

Index Terms— music summarisation, Fischer discrimi-
nant analysis, clustering, audio analysis

1. INTRODUCTION

Creating a concise audio summary, also referred as audio
thumbnail, that best represents an original musical audio sig-
nal is a challenging research topic in music content analysis
[1, 2]. Appealing audio summaries should allow listeners to
get both a good feeling and a good idea of the original music.
This focus of this paper is on the latter issue, namely on fa-
cilitating audio summarization by organizing the audio signal
into a set of (possibly recurring) parts, such that inclusion of
an expert from each part would be adequate to represent the
whole audio signal.

Our objective is akin to but not identical to music struc-
ture analysis in music of sectional form, which comes down
to recovering the sectional structure of a musical piece, such
as intro, chorus and verse. Our proposed method does not
make any particular assumptions about the existence of mu-
sical structure, neither does it assigns sectional labels to ex-
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tracted parts. Instead, it results to a partitioning of the audio
stream into contrasting clusters of (possibly not contiguous)
audio segments. However, these clusters often correspond to
musical sections, which fact has enabled us to base our exper-
iments in corpora of musical pieces with sectional annotation.

Several audio features and pattern analysis methods have
been adopted in order to achieve segmentation of music
signals. As far as the audio features are concerned, Mel-
frequency cepstral coefficients (MFCCs) [1] are a widely used
type of feature. Even though most methods [2, 3, 4] adopt
chroma-based features, which seem to fit naturally in the
music domain, MPEG-7 audio descriptors have also been
used in [5], focusing on audio spectrum envelope features.
Regarding the core of the music segmentation task (i.e., the
method which is responsible for discovering homogeneous
segments), many methods are based on the computation of
the self-similarity matrix [1, 2], where the similarity measure
can be obtained in several ways, such as the Euclidean dis-
tance or the scalar product between the audio feature vectors.
Self-similarity analysis is also adopted in [3], along with dy-
namic time warping, while a Hidden Markov Model (HMM)
model has been used towards musical key estimation. In [5],
a HMM with a large number of states is used in order to ex-
tract low-level labels, based on the adopted audio features for
each frame and then histograms of neighbouring frames are
clustered into segment-types.

In this paper, we present our research towards estimating
a feature subspace which can be used to discriminate between
musical parts. Instead of applying some clustering method on
the initial feature space (whatever the selection of the audio
features is), we propose leveraging information from the se-
quential structure of the audio signal, in order to find a Fisher
linear discriminant subspace, where the discrimination be-
tween the different musical parts is more accurate. Section 2
discusses the way the initial feature space is obtained, while
the way the sequential structure of the audio signal is taken
into account to obtain the discriminant subspace is the subject
of Section 3. Finally, Sections 4 and 5 present the experimen-
tal results and the conclusions respectively.
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2. FEATURE EXTRACTION

Our methodology relies first on representing the audio signal
as a sequence of IV,-dimensional feature vectors correspond-
ing to overlapping fixed-size segments of the input signal. To
derive these V,-dimensional feature vectors, we have adopted
a two-step methodology, similar to the one in [6] and [7].

At a first stage, a short-time analysis is conducted, result-
ing in N=/2 audio features for every w; of audio signal:

{o[n] € RN*'/Z} nell...T/wy,

where T is the duration of the audio signal and T'/wj is the
number of wg-sized non-overlapping short-term windows.
The values used in our experiments are N,, = 62 for the num-
ber of coefficients and ws = 50ms for the analysis window
and analysis step. The particular audio features extracted for
each short-term frame are the following:

e Zero Crossing Rate (zZCR): this is the rate of sign-
changes of a signal, i.e., the number of times the signal
changes from positive to negative or back, per time
unit.

e Entropy of energy [7]: this feature is a measure of
abrupt changes in the energy level of an audio signal
and it is extracted by computing the entropy of the
normalized energy values of a particular number of
sub-frames.

e Spectral centroid [6]: this is the centre of “gravity” of
the spectrum.

e Spectral spread: this feature is extracted by taking the
root-mean-square (RMS) deviation of the spectrum
from its centroid (defined above).

e Spectral entropy [8]: this feature is computed by divid-
ing the spectrum of the short-term frame into sub-bands
(bins) and then computing the entropy of the individual
spectral energies of the bins.

e Spectral flux [6]: this feature measures the local spec-
tral change between successive frames.

e Spectral rolloff [6]: this feature is equal to the fre-
quency below which certain percentage of the magni-
tude distribution of the spectrum is concentrated.

e 12 MFCCs (energy coefficient is ignored) [9]: MFCCs
is actually a type of cepstral representation of the sig-
nal, where the frequency bands are computed using the
Mel-scale.

e 12 chroma coefficients: this type of audio features
(proposed by Wakefield in [10]) is a 12-element rep-
resentation of the spectral energy of a signal, known

as the Chroma Vector. Each element of the vector cor-
responds to one of the twelve traditional pitch classes
(i.e., twelve notes) of the equal-tempered scale of the
Western music.

The second stage of the feature extraction methodology
is the mid-term statistic calculation. In particular, the means
and variances over L subsequent vectors o[n] are extracted
here, leading to N,-dimensional vectors x[n]. Means consti-
tute the first half dimensions of the vectors, while variances
the second half:

1 n+L

x;[n] = I Z o[m],i=1[0...Nz/2),

m=n

n+L )
> (0inapplm] = winappln])” i = [Nef2... Ny

m=n

1
x;i[n] = I
Each x[n] describes a texture window of duration w; =
L - ws. Length of windows has been set to L; = 50
(w; = 1000ms) for all tasks, except for FLSD (Fisher semi
-discriminant Linear Analysis, which is discussed in the se-
quel), where a smaller value Lo = 20 (w; = 400ms) is used,
to allow the feature vector of the the texture window to vary
within a music thread (see Section 3 for the definition of
music thread). These two lengths result respectfully to two
sequences of features vectors, namely x; [n] and x2[n].

3. USING FISHER LINEAR SEMI-DISCRIMINANT
ANALYSIS IN CLUSTERING OF MUSICAL
SEGMENTS

3.1. Applying FLSD to find a discriminant subspace

As described in Section 2, the audio signal is represented by
a sequence of IN,- dimensional feature vectors, mapped to
some musical part (music cluster). This initial feature space
can be considered as the sum of two orthogonal subspaces:
a discriminative subspace and a classification-irrelevant sub-
space. In many cases the largest part of the original fea-
ture space does not contain discriminative information, which
can lead to wrong estimation of the desired cluster, due to
the fact that most clustering algorithms involve the Euclidean
distance. In this paper we propose using a semi-supervised
method to extract the discriminative subspace, called Fisher
Linear semi-discriminant Analysis (FLSD). A complete de-
scription of this method, though, in the context of speaker
diarization, can be found in [11].

The basic idea in Fisher linear discriminant analysis
(FLD) is to extract linear combinations of features, where
the means of classes are far from each other and the variance
within each class is small. Let x be a N,.-dimensional feature
vector, C = {c.} be the set of classes, and {x* ~ ¢’} be a set
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of mappings between feature vector samples to classes. The
between-class scatter matrix is defined as:

Sp = ch[(mc - m)(mc - m)—r]v (1)

where m = & x: [x°], m, = Exirye[X?], Ve € C, the average
within-class scatter matrix is defined as

Sw= & & [(Xl - mC)(xi - mC)T] . (2)

ceC [xirsc

and the total scatter matrix of samples as

Sm= & [(x'—m)(x'—m)T],

all x*
where £ denotes the statistical average. Note that S,,, does not
depend on the class mappings, while one can easily verify that
Sm = Sp+ S.. Given a positive integer N, < N, the aim of
FLD is to find, among all possible N,, x N,, full rank matrices
A, the matrix that optimizes a criterion of the following form:

A = argmax, cpn.xny (A, S1,S2). 3)

where (S, S2) can be any of {(Sy, Sw), (SimsSw), (Sbs Sm) }-
Several criteria of this form have been studied [12, Chapter
|ATS1A|
|ATS2A|
found, it can be used to project the original N, -dimensional
feature vectors to their IN,-dimensional FLD-optimal sub-

space

10], Sammon [13], such as r = As long as AT is

y=A"x )

In order to use the FLD criterion one needs to know the
class label of each sample from a training dataset. However,
this type of information may be unavailable in a clustering
framework. In the musical part clustering task, we do not
know all the audio samples (i.e., signal segments) that be-
long to the same musical part beforehand, but one can guess
that, for each sample, all neighbouring samples, in a rela-
tively small window, most likely belong to the same musical
part.

At this point, let us introduce the term of class threads.
Each class can be composed out of one or more class threads,
in the sense that all samples mapped to the same class thread
v, are also mapped to the same class c¢. The surjective map-
ping of class threads to class, denoted by h(v), provides, for
each class thread, its corresponding class. Assuming that h
is not known, while we do know the mapping of samples to
class threads, we can estimate the average within-class thread
Sh and between-class thread S} scatter matrices and then
apply the FLD criterion using these matrices. It has been
shown in [11] that, under certain conditions, the subspace
found using S and S in the optimization equation can well
approximate the one that would had been found if the map-
ping with original classes were known. This optimization ob-
tained using the within-class thead and between-class thread

Fig. 1. A FLsD example in two dimensions with two classes
and six class threads. Solid (resp. dashed) ellipses correspond
to the contours of the variances of two class threads (resp.
classes). The projection found by FLSD (solid line) closely
approximates the one found by FLD (dashed line).

scatter matrices is defined as the optimal Fisher Linear Semi-
Discriminant (FLSD) matrix. Note that S,,, is used to refer
to both mixed-class and mixed-class thread scatter matrices,
which are equal, since there is no involvement of the class or
the class-thread mapping in their definition.

Figure 1 shows a toy example in a 2D space, with two
classes composed by three class threads each. The FLD pro-
jection (dashed line in the figure) has been evaluated using
the mapping to the original classes, {x%, c'}. Evaluation of
the optimal FLSD projection (solid line in the figure) uses
the class threads instead, {x, v'}, neither the mapping to the
original classes, nor h. Notice that, in this example, the FLSD
projection is a close approximation to the FLD projection.

In [11] we have pointed out that we should expect a near-
optimal behavior of the FLSD criterion. In particular, we can
seek for an approximate discriminative subspace using class
threads, instead of the classes, as long as the first-order statis-
tics over the classes’ threads do not differ much from the first-
order statistics over their corresponding original ones.

Let us now describe the analytical steps of the algorithm
that incrementally evaluates S” through a long-term analysis
of the audio signal. The algorithm proceeds by sequentially
analysing fixed-size segments of duration w;. For every music
segment, a new music-part thread is created, and the feature
vectors sampled within this segment are used to obtain the
music-part thread mean feature vector and scatter matrix, also
updating the overall within-class thread and mixed-class scat-
ter matrices. Once all the audio signal has been processed, the
scatter matrices are given as arguments to the Fisher criterion
to obtain the optimal music-discriminative subspace.

3.2. Obtaining music clusters

Up to now, we have described the FLSD approach in order
to find the music-discriminative subspace. In this section we
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Algorithm 1: FLsD

Input: x2[n|,n € 1...(T/ws, — La) // used for the scatter
matrices
Parameter: N, // subspace dimension

Output: A N, x N, // the optimal FLSD matrix

n <— 1 // initialise the analysis window sequence index

v <— 1 //initialise the class thread index

m < Ox,,Sm < On, xnN,, S < On, xn, // initialisation
while 7 < - — Ly do

R <+ [n...n+ Li — L3) // range of texture windows
m < ﬁ > ker X2[k], // class thread mean

Se ﬁ > ker X2[k]x2[k]" // class thread cov. mat.
Sh sk 4 2(Se — mcmCT) /1 within-class

m < m+ Ztmec, S < Sm + S-S // mixed-class
v <— v + 1 // advance the musical part-thread index

n < n + L1 // advance the analysis window

Sim < S,, — mm' // evaluate mixed-class scatter matrix

A =argmax, . 7(A, Sy, S /1 apply the Fisher criterion
z XNy

will show how the music clusters are obtained, after the op-
timal subspace has been computed. Overall, the following
steps are applied:

1. For each non-overlapping window of duration wy, a fea-
ture vector x1[n| is generated (Section 2) and subse-
quently projected to the precomputed FLSD subspace
(as discussed in Section 3.1) resulting to vector y[n] =
ATxl [n] .

2. The set of all projections y[n], independently to their
order, are partitioned using a Fuzzy C-Means cluster-
ing algorithm [14]. Moreover, for each y[n], a cluster
probability is estimated as the ratio of feature vectors
attributed to the given cluster that are among the K
closest to the given y[n]. In our experiments, K has
been set as the 10% of the sample set. In other words,
the k-Nearest Neighbour classifier has been adopted
here as a cluster probability estimator.

3. Using the previously estimated labels, the cluster tran-
sition matrix along with the prior probabilities of each
cluster are evaluated. Together with the K-NN, these
define an HMM model with states as many as clusters.
Then, by applying the Viterbi algorithm, the most prob-
able path is obtained.

4. Through HMM smoothing, some segments end up with
having a label different from the one proposed by the
clustering algorithm. It follows that the K-NN estimates
of the conditional distributions are modified and hence
Step 3 can be repeatedly applied to further improve the
results. It has been experimentally found that this pro-
cess converges within a few iterations.

5. Successive segments of the same cluster are merged,
forming longer cluster-homogeneous segments.

It has to be noted that the adopted fuzzy clustering algo-
rithm requires knowing the number of clusters beforehand.
Since this information is typically not available, Steps 2 to 4
are applied for a range of number of clusters and the Silhou-
ette Width criterion [15] is used to decide about the quality
of the clustering result in each case and therefore the optimal
number of clusters.

4. EXPERIMENTAL RESULTS

4.1. Dataset

As described in Section 1, our objective is not to recover
the sectional structure of a musical piece, since we do not
make any particular assumptions about the musical structure.
Though, since an objective evaluation dataset is needed, we
have adopted the Beatles annotation dataset !, developed by
the Center of Digital Music, Queen Mary. We have used
the provided musical sections (e.g., intro, verse, etc) of this
dataset as separate segments for our clustering task.

4.2. Performance measures

Since the purpose of the proposed algorithm is to detect
clusters of musical parts, we have obviously used clustering-
related performance measures. First, our approach was eval-
uated based on the overall accuracy rate, defined as the ratio
of correctly clustered segments duration to the fotal signal
duration. This measure is based on the optimal one-to-one
mapping of the cluster labels with the true labels. This is
achieved by applying the Hungarian method to the result-
ing confusion matrix between clusters and musical parts. In
addition, we have used the Average Cluster Purity (ACP)
and Average Musical Part Purity (AMP) measures, defined
respectively as

1 &
ACP = — max  1;
a j=1..Ns =
i=1
and
N
AMP L
= — max n;;
N, < < i=1..N, t
]:

where N, is the total number of segments, Ny is the total
number of musical parts, IV, is the total number of detected
clusters and n;; is the total number of segments classified
in musical part (cluster) ¢ and belonging to musical part j.
We have also considered the Normalized Mutual Information
Max (NMI,,,,,;) measure as suggested in [16], which is used
to compare two partitions over the same data.

Uhttp://isophonics.net/content/reference-annotations-beatles
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Performance  Feature space

measure %  Initial FLSD
Accuracy 60 69
ACP 65 7
AMP 83 78
NMI, 0 33 48

Table 1. Comparison of the clustering performance, with and
without the FLSD subspace step.

4.3. Performance results

In Table 1 we present the performance measures of the pro-
posed method when both feature spaces (original and FLSD)
were adopted. The improvement when using the Fisher dis-
criminant subspace is obvious: in terms of overall accuracy,
the FLSD subspace leads to 15% relative increase, while in
terms of the mutual information measure the relative increase
is more than 40%. Finally, it has to be noted that the best per-
formance was achieved for N, = 13 dimensions of the FLSD
subspace.

5. CONCLUSIONS

This study has shown that the estimation of a Fisher subspace
in terms of music-part discrimination boosts the performance
of the music clustering task. In particular, a 15% of relative
increase in the overall accuracy is achieved with respect to
the original feature space. It has to be noted that in this work
we have taken into account mid-term audio feature statistics,
generated over fix sized segments (texture windows). There-
fore, no information regarding the overall musical structure of
the audio signal, such as beat and rhythm information, is con-
sidered in this work. We plan to embed such music-related
characteristics in the future, in order to further improve the
performance of the method.
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