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ABSTRACT

In this paper, we address some variations of the source-
localization-preserved MMSE STSA estimator used for
binaural hearing aids. In our previous work, the sound-
localization-preserved MMSE STSA estimator with ICA-
based noise estimation has been proposed. However, this
conventional method is based on an approximated optimiza-
tion criterion and does not use binaural cues, resulting in
poor noise reduction performance. To solve this problem,
we propose two methods: a multichannel MMSE STSA es-
timator with explicit binaural cues, and a sound-localization-
preserved generalized MMSE STSA estimator with different
speech priors for the left and right channels as implicit bin-
aural cues. From the results of objective and subjective
evaluation, we confirm that the noise reduction performance
is improved using the proposed method.

Index Terms— Hearing aids, ICA, MMSE STSA estima-
tor, localization, generalized gamma distribution

1. INTRODUCTION

In recent years, the number of applications of speech com-
munication systems has increased. These systems, however,
always suffer from the problem of a deterioration of speech
quality under adverse noise conditions. Therefore, many
noise reduction methods have been actively studied. In this
paper, we address a noise reduction technique for binaural
hearing-aid systems [1, 2, 3] by evaluating the quality of a
speech-enhanced signal according to the human perceptual
impression as well as by the amount of noise reduction.

The basic theory of the minimum mean square error
(MMSE) short-time spectral amplitude (STSA) estimator has
been presented by Ephraim et al. [4] for the optimal identifi-
cation of the target speech amplitude spectrum in the MMSE
sense, ignoring phase spectrum information. The MMSE
STSA estimator has a good balance between noise reduction
ability and low speech distortion. In previous works, the
sound-localization-preserved MMSE STSA estimator with
dynamic noise estimation based on independent component
analysis (ICA) [5] has been proposed by the authors [6] for
achieving nonstationary noise reduction. In [6] as well as [3],
it is shown that sound localization can be preserved using a
common spectral gain for noise reduction at each channel of
the left and right ears. However, the conventional method
proposed in [6] was based on an approximated optimization
criterion and did not use binaural cues to estimate the optimal
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common spectral gain for each channel. This often causes
deterioration in the noise reduction performance.

To improve the noise reduction performance of the con-
ventional method, we propose two methods in this paper.
First, we introduce a multichannel MMSE STSA estimator
to provide a strict solution without any approximation. This
method greatly improves the sound quality, but is not practical
because an accurate head-related transfer function (HRTF) of
each user is required as explicit binaural cues. Therefore,
secondly, we propose a sound-localization-preserved gener-
alized MMSE STSA estimator. In this method, we replace the
original MMSE STSA estimator in the conventional method
with a generalized MMSE STSA estimator, to which we
apply different speech priors for the left and right channels
as implicit binaural cues. From the results of objective and
subjective evaluation, we confirm that the noise reduction
performance is improved using the proposed method.

2. SIGNAL MIXTURE MODEL

We consider an acoustic mixing model with two microphones,
i.e., two earphones, and assume that the observed signal con-
tains only one target speech signal, which can be regarded
as a point source, and an additive noise signal. This addi-
tive noise signal cannot be regarded as a point source. Here-
after, the observed signal vector in the time-frequency do-

main, x(f, τ) = [xL(f, τ), xR(f, τ)]
T, is given by

x(f, τ) = h(f)s(f, τ) + n(f, τ), (1)

where f is the frequency bin number, τ is the time-frame

index, h(f) = [hL(f), hR(f)]
T is the column vector of

transfer functions between the target source and each ear-
phone, s(f, τ) is the target speech signal component, and

n(f, τ) = [nL(f, τ), nR(f, τ)]
T is the column vector of the

additive noise signal. Throughout this paper, the subscripts
(or superscripts) L and R represent the signals obtained at the
left and right ears, respectively.

3. CONVENTIONAL METHOD

3.1. MMSE STSA Estimator with ICA-Based Noise Esti-
mation

Figure 1 shows a block diagram of the conventional method
consisting of an MMSE STSA estimator-based primary path
and a reference path for ICA-based noise estimation [6]. The
noise component estimated by ICA is used to determine the
a posteriori signal-to-noise ratio (SNR) and the optimal spec-
tral gain applied to the L and R channel signals, neglecting
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Fig. 1. Conventional sound-localization-preserved MMSE

STSA estimator with ICA-based noise estimation [6].

phase information; this enables the method to realize error-
robust noise reduction.

First, in the reference path, we perform signal separation
and noise estimation using ICA [5]. Due to the limitation of
the paper space, we omit the detailed algorithm to estimate
noise (see [7] for further details). Next, using the noise com-
ponents estimated by ICA, we derive the gain function opti-
mized on the basis of the MMSE STSA estimation criterion.
Hereinafter, for convenience, the subscript ∗ ∈ {L,R} is used
to indicate the index of channels. The estimated a posteriori
SNR γ̂∗(f, τ) is obtained by

γ̂∗(f, τ) = |x∗(f, τ)|
2{E{|ζ∗(f, τ)|

2}τ(τ−τth)
}−1, (2)

where ζ∗(f, τ) is the noise component estimated by ICA, τth
is a smoothing parameter denoting a certain time frame win-

dow, and E{·}BA denotes the expectation operator from A to
B. Note that we can momentarily estimate the instantaneous
a posteriori SNR (2) by utilizing the noise signal estimated
by ICA, in contrast to the case of using the original MMSE
STSA estimator [4]. Therefore, we consider that our pro-
posed method can suppress nonstationary noise more effi-
ciently than the conventional MMSE STSA estimator.

Next, using (2), the a priori SNR ξ̂∗(f, τ) is estimated as

ξ̂∗(f, τ) = αγ̂∗(f, τ − 1)G2
∗
(f, τ − 1)

+ (1− α)P [γ̂∗(f, τ)− 1], (3)

where α is the weighting factor of the decision-directed es-
timation, G∗(f, τ) is a spectral gain function, and P [·] is a
flooring function in which a negative input is floored to zero.
Also, the spectral gain function is defined by [4]

G∗(f, τ) =Γ(1.5)

√

ν∗(f, τ)

γ̂∗(f, τ)
exp (ν∗(f, τ)/2)

· [{1 + ν∗(f, τ)}I0 (ν∗(f, τ)/2)

+ν∗(f, τ)I1 (ν∗(f, τ)/2)] , (4)

where Γ(·) denotes the gamma function and I0(·) and I1(·)
denote modified Bessel function of the zeroth and first order,
respectively. Moreover, ν∗(f, τ) is defined by

ν∗(f, τ) = ξ̂∗(f, τ)γ̂∗(f, τ){1 + ξ̂∗(f, τ)}
−1. (5)

Finally, noise reduction is carried out as follows:

z∗(f, τ) = G∗(f, τ)x∗(f, τ), (6)

where z∗(f, τ) is the final output of this method for both ears.

3.2. Estimation of Equi-Binaural Optimal Spectral Gain

The results in [6, 3] indicate that it is essential to apply equiv-
alent spectral gains for the L and R channels to increase the
localization accuracy. Therefore, to obtain the optimal spec-
tral gain that maintains the localization accuracy, we intro-
duce the spectral gain that minimizes the residual noise power
in terms of the MMSE under the condition that the spectral
gains are equivalent in both channels. Hereafter, we call this
gain the equi-binaural optimal spectral gain.

The derivation of the equi-binaural optimal spectral gain
can be formulated as the minimization problem of the follow-
ing error e:

e =E
[

{|hL(f)s(f, τ)| −G(f, τ)|xL(f, τ)|}
2

+{|hR(f)s(f, τ)| −G(f, τ)|xR(f, τ)|}
2
]

, (7)

where G(f, τ) is the equi-binaural spectral gain, which is con-
sidered as a variable. This problem can be approximately re-
formulated as [6]

Gopt(f, τ) ≃ argmin
G(f,τ)

E
[

{(G(f, τ)−GLopt
(f.τ))|xL(f, τ)|}

2

+ {(G(f, τ)−GRopt
(f.τ))|xR(f, τ)|}

2
]

, (8)

where GLopt
(f, τ) and GRopt

(f, τ) are the L- and R-channel
optimal spectral gains, respectively, given by (4). The solu-
tion of (8) is given by

Gopt(f, τ) =
GLopt

(f, τ)|xL(f, τ)|
2 +GRopt

(f, τ)|xR(f, τ)|
2

|xL(f, τ)|2 + |xR(f, τ)|2
.

(9)

4. PROPOSED METHOD I: HRTF-INFORMED
MULTICHANNEL MMSE STSA ESTIMATOR

4.1. Multichannel MMSE STSA Estimator

In the conventional method [6], the equi-binaural optimal
spectral gain is approximately estimated using optimal spec-
tral gains independently obtained from single-channel MMSE
STSA estimation for each channel. Thus, the conventional
method does not use binaural cues such as the HRTF. This fact
often causes serious degradation of the noise reduction per-
formance, particularly in the case that the target speech source
is laterally located on the right- (left-) hand side. Therefore,
in this section, we introduce the oracle method using the
multichannel MMSE STSA estimator [8], which explicitly
uses the HRTF in the estimation of the target speech instead
of single-channel MMSE STSA estimators for each channel.
This method can give the equi-binaural optimal spectral gain
without approximation.

The multichannel MMSE STSA estimator can be viewed
as a cascade of minimum variance distortionless response
(MVDR) beamforming and the single-channel MMSE STSA
estimator [8]. The output of MVDR beamforming is given by

Y (f, τ) =
h(f)HΣN(f, τ)

−1
x(f, τ)

h(f)HΣN(f, τ)−1h(f)
, (10)
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where ΣN(f, τ) is a noise covariance matrix momentarily es-
timated by ICA, which is defined as

ΣN(f, τ)

= E{[ζL(f, τ), ζR(f, τ)]
H[ζL(f, τ), ζR(f, τ)]}

τ
(τ−τth)

.

(11)

Then, the a posteriori SNR for Y (f, τ) is calculated as

γ̂Y(f, τ) = |Y (f, τ)|2h(f)HΣN(f, τ)
−1

h(f). (12)

Next, using (12), the a priori SNR estimate ξ̂Y(f, τ) is given
as

ξ̂Y(f, τ) =αγ̂Y(f, τ − 1)GY(f, τ − 1)2

+ (1− α)P [γ̂Y(f, τ)− 1], (13)

where GY(f, τ) is the spectral gain function of the multichan-
nel MMSE STSA estimator and is defined as

GY(f, τ) =Γ(1.5)

√

νY(f, τ)

γ̂Y(f, τ)
exp (νY(f, τ)/2)

· [{1 + νY(f, τ)}I0 (νY(f, τ)/2)

+νY(f, τ)I1 (νY(f, τ)/2)] , (14)

νY(f, τ) =ξ̂Y(f, τ)γ̂Y(f, τ){1 + ξ̂Y(f, τ)}
−1. (15)

Finally, the resultant equi-binaural optimal spectral gain with-
out approximation that can strictly minimize (7) is given by

Goracle(f, τ) =
|hL(f)||xL(f, τ)|+ |hR(f)||xR(f, τ)|

|xL(f, τ)|2 + |xR(f, τ)|2

·GY(f, τ)Y (f, τ). (16)

4.2. Experimental Evaluation of Proposed Method I

To evaluate the noise reduction performance of the oracle
method, we conducted an experiment on noise reduction. In
this experiment, the conventional method and oracle method
were compared.

We used 20 utterances (10 males and 10 females from the
Japanese newspaper dictation database) as target speech sig-
nals and two types of noise signals, namely, white Gaussian
noise or speech noise, with spatially diffuse property. Fur-
thermore, the binaural speech signals from three horizontal
directions, 0, 30, and 60 degrees, were obtained by convolu-
tion of the target speech signals and the HRTF of each direc-
tion, where the reverbration time was 200 ms. The test data
were obtained by combining the binaural speech signals and
noise signals. All signals used in this experiment were 16-
kHz-sampled signals. The input SNR was set to 0 dB. The
weighting factor α of the decision-directed estimation was
0.97. The number of iterations in ICA was 300, and the DFT
size was 1024. To compare the amount of noise reduction and
sound quality, we calculated the noise reduction rate (NRR)
[7] (output SNR - input SNR in dB) and cepstral distortion
(CD) [9] (a measure of the degree of spectral envelope distor-
tion) of the processed signals.

Figure 2 shows the results for the average NRR and CD of
all the target speakers for each direction. While the conven-
tional and oracle methods show almost the same performance
for speech distortion, the oracle method can achieve higher
noise reduction performance than the conventional method.
This indicates the advantage of Proposed Method I.
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Fig. 2. Experimental results of NRR for (a) white Gaussian

noise and (b) speech noise, and CD for (c) white Gaussian

noise and (d) speech noise in Proposed Method I.

5. PROPOSED METHOD II: GENERALIZED MMSE
STSA ESTIMATOR WITH SPEECH PRIOR

ESTIMATION

5.1. Problem of Oracle Method and Motivation

In the case of using the multichannel MMSE STSA estimator,
the noise reduction performance was markedly improved as
shown in the previous section. This indicates that the noise
reduction performance will be improved by using binaural
cues such as the HRTF. However, it is difficult to estimate
the HRTF blindly in practice because the shape of the head of
hearing-aid users greatly varies. Therefore, we propose a new
method that applies different speech priors for the left and
right channels as binaural-cue-like information that can be es-
timated blindly. More specifically, the original MMSE STSA
estimator is replaced with a generalized MMSE STSA estima-
tor [10, 11]. When the target speaker is located on the right-
hand side, the observed signal at the right channel arrives di-
rectly, but that of the left channel is more reverberant because
of the head diffraction and room reverberation. Hence, the
probability density functions (p.d.f.s) of the speech signals
observed at each channel vary depending on the speaker di-
rection. However, the original MMSE STSA estimator ap-
plied only one fixed speech prior for the target speech signal.
Therefore, we apply different speech priors for the left and
right channels by replacing the original MMSE STSA estima-
tor with the generalized MMSE STSA estimator. In addition,
we introduce a blind speech prior identification algorithm in
the next subsection. Figure 3 shows a block diagram of the
proposed method.

5.2. Parametric Model for Speech

The original (Ephraim’s) MMSE STSA estimator assumes
that the speech signal obeys a Gaussian distribution. How-
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ever, it is well known that the speech signal has a more spiky
p.d.f. similar to a Laplacian distribution. Therefore, in the
generalized MMSE STSA estimator, the generalized gamma
distribution is utilized to model the amplitude spectral grid
signal in the time-frequency domain [10]. Its p.d.f. is written
as

p(a) = 2φηΓ(η)−1a2η−1exp(−φa2), (17)

where φ = η/E{|a|2} and η (0 < η < 1) is a shape param-
eter; η = 1 gives a Rayleigh distribution that corresponds to
a Gaussian signal, and a smaller value of η corresponds to a
super-Gaussian signal.

5.3. Generalized MMSE STSA Estimator [10]

In the generalized MMSE STSA estimator, a posteriori and a
priori SNRs at each channel can be estimated in a similar way
to those in the original MMSE STSA estimator using (2) and
(3), respectively. Also, the spectral gain function is defined as

G̃∗(f, τ) =

√

ν̃∗(f, τ)

γ̂∗(f, τ)

Γ(η∗ + 0.5)

Γ(η∗)

Φ(0.5− η∗, 1,−ν̃∗(f, τ))

Φ(1− η∗, 1,−ν̃∗(f, τ))
,

(18)

ν̃∗ = ξ̂∗(f, τ)(η∗ + ξ̂∗(f, τ))
−1γ̂∗(f, τ), (19)

where Φ is a confluent hypergeometric function. The gain

G̃∗(f, τ) includes a shape parameter η∗ that should represent
the speech p.d.f. prior. In Sects. 5.4 and 5.5, we describe how
to blindly estimate η∗.

5.4. Shape Parameter and Kurtosis

Regarding the generalized gamma distribution p(a) in (17),
the mth-order moment can be written as

µm(a) =

∫

∞

0

amp(a)da =
Γ(η + m

2 )

Γ(η)
φ−

m

2 . (20)

Then, the kurtosis of the generalized gamma distribution is
calculated as

kurt = µ4(a)/µ
2
2(a) = (η + 1)/η. (21)

Furthermore, the shape parameter η is given by

η = (kurt− 1)−1. (22)

From this relation, the shape parameter of the subjective
speech signal can be estimated by obtaining its kurtosis
value. In general, however, it is difficult to directly estimate
the kurtosis of a speech signal because of its contamination
by additive noise. Hereafter, an algorithm for speech kurtosis
estimation is described.

5.5. Estimation of Speech Kurtosis and Gain Function

Hereafter, we define complex-valued variables of the ob-
served (noisy speech) signal, the original speech signal, and

the noise signal of each channel as (xL
r +ixL

i ) and (xR
r +ixR

i ),
(sLr +isLi ) and (sRr +isRi ), (n

L
r +inL

i ) and (nR
r +inR

i ), respec-
tively, where xr = sr + nr and xi = si + ni. The subscripts
r and i respectively represent the real and imaginary parts

of signals. Only the statistics of (xL
r + ixL

i ), (x
R
r + ixR

i ),
(nL

r + inL
i ), and (nR

r + inR
i ) are observable, whereas those

of (sLr + isLi ) and (sRr + isRi ) are unknown values to be
estimated.

We can estimate the resultant kurtosis of the speech am-
plitude spectrum as

kurt∗sp =
[

µ4(x
∗

r ) + µ4(x
∗

i )− µ4(n
∗

r )− µ4(n
∗

i )

+ 6µ2
2(n

∗

r ) + 6µ2
2(n

∗

i )

+ 2µ2(x
∗

r )µ2(x
∗

i ) + 2µ2(n
∗

r )µ2(n
∗

i )

− 6µ2(x
∗

r )µ2(n
∗

r )− 6µ2(x
∗

i )µ2(n
∗

i )

− 2µ2(x
∗

r )µ2(n
∗

i )− 2µ2(x
∗

i )µ2(n
∗

r )
]

·
[

µ2
2(x

∗

r ) + µ2
2(x

∗

i ) + µ2
2(n

∗

r ) + µ2
2(n

∗

i )

+ 2µ2(x
∗

r )µ2(x
∗

i )− 2µ2(x
∗

r )µ2(n
∗

r )

− 2µ2(x
∗

r )µ2(n
∗

i )− 2µ2(x
∗

i )µ2(n
∗

r )

− 2µ2(x
∗

i )µ2(n
∗

i ) + 2µ2(n
∗

r )µ2(n
∗

i )
]

−1

. (23)

For the detailed derivation of (23), see Ref. [12].
The shape parameter of the speech p.d.f. at each channel

can be estimated using these kurtosis and (22). Finally, the
equi-binaural optimal spectral gain estimated by the proposed
method is obtained by inserting (18) into (9), as

G̃opt(f, τ)

=
|xL(f, τ)|

2
√

ν̃L(f, τ)Γ
(

(kurtLsp − 1)−1 + 0.5
)

{|xL(f, τ)|2 + |xR(f, τ)|2}γ̂L(f, τ)Γ
(

(kurtLsp − 1)−1
)

·
Φ(0.5− (kurtLsp − 1)−1, 1,−ν̃L(f, τ))

Φ(1− (kurtLsp − 1)−1, 1,−ν̃L(f, τ))

+
|xR(f, τ)|

2
√

ν̃R(f, τ)Γ
(

(kurtRsp − 1)−1 + 0.5
)

{|xL(f, τ)|2 + |xR(f, τ)|2}γ̂R(f, τ)Γ
(

(kurtRsp − 1)−1
)

·
Φ(0.5− (kurtRsp − 1)−1, 1,−ν̃R(f, τ))

Φ(1− (kurtRsp − 1)−1, 1,−ν̃R(f, τ))
. (24)
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Fig. 4. Results of NRR for (a) white Gaussian noise and (b)

speech noise, and CD for (c) white Gaussian noise and (d)

speech noise in Proposed Method II.

The resultant output signals for the left and right ears can be
obtained in the same manner as (6), as

z∗(f, τ) = G̃opt(f, τ)x∗(f, τ). (25)

5.6. Experimental Evaluation of Proposed Method II

To evaluate Proposed Method II, we conducted an experiment
under the same conditions as those of Proposed Method I
(see Sect. 4.2). Figure 4 shows the results for the average
NRR and CD of all the target speakers for each direction. Al-
though Proposed Method II achieves greater noise reduction
than the conventional method, it leads to more speech dis-
tortion. Therefore, a trade-off exists between the amount of
noise reduction and speech distortion in the conventional and
proposed methods.

Since we found the above-mentioned trade-off, we next
conducted a subjective preference test for settling the perfor-
mance competition, focusing on the human impression of the
enhanced speech. The result of the preference test is shown
in Fig. 5. Nine examinees participated in the preference test.
A pair of signals processed using the conventional method
and Proposed Method II, for which the type of noise and the
direction the of target speech were selected randomly, were
presented to participants, who were asked to select which sig-
nal they preferred. As shown in Fig. 5, Proposed Method II
gains a higher preference score than the conventional method.
This well indicates the improvement of the proposed method
in terms of the human perceptual impression.

6. CONCLUSION

In this paper, we addressed some variations of the source-
localization-preserved MMSE STSA estimator used for bin-
aural hearing aids. As a practical solution, we proposed a

 0  20 40 60  80  100

Conventional Proposed

95% confidence interval

Preference score [%]

Fig. 5. Result of preference test for Proposed Method II.

generalized MMSE STSA estimator to apply different speech
priors for the left and right channels. From an objective eval-
uation, it was shown that there is a trade-off between NRR
and CD in the conventional and proposed methods. However,
in the subjective evaluation, the proposed method achieved a
higher preference score than the conventional method accord-
ing to human perception.
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