

A GENERIC VIDEO ADAPTATION FRAMEWORK TOWARDS CONTENT-

AND CONTEXT-AWARENESS IN FUTURE NETWORKS
Willy Aubry

1,2,3
, Daniel Négru

2
, Bertrand Le Gal

1
, Simon Desfarges

2
, Dominique Dallet

1

waubry@viotech.net, negru@labri.fr, legal@ims-bordeaux.fr, desfarge@labri.fr, dallet@ims-bordeaux.fr

1
University of Bordeaux,

IMS Laboratory,

CNRS UMR 5218, IPB,

Talence, France

2
University of Bordeaux,

LaBRI Laboratory,

CNRS UMR 5800, IPB

Talence, France

3
Viotech Communications

Montigny-le-Bretonneux, France

ABSTRACT

Network researches are more and more turned toward

content and context aware features. Thus, being able to

manipulate data flows and to adapt those to given

constraints with a minimum resource involvement is a vast

research issue. On top of those topic researches resides

video manipulation. But, developing heterogeneous video

transcoder takes tremendous time. Many solutions have

been proposed to reduce resource consumption at runtime

but involve re-development of every codec for every

situation, multiplying development cost under time to

market constraint. In this paper, we propose a generic

framework that enables the reuse of already developed and

ready to use codecs, saving time to market for next

generation network devices.

Index Terms— Video adaptation, heterogeneous

transcoder, generic framework

1. INTRODUCTION

In today’s world, video stream is one of the most consumed

data flow over Internet, with the most bandwidth

demanding. Hence, video streams have the main impact on

the global network. Thus, trying to transport an adapted

video stream to the network characteristics has been deeply

studied [9][10]. Nowadays, network oriented researches are

directed toward the end user’s quality of experience. The

network state is not the only parameter considered for video

adaptation any more. The user context, especially its

terminal characteristics such as supported codec and screen

resolution, is now the main constraint that has to be taken

into account.

This problematic is one of the main focus in media

centric ecosystem and a key to content and context

awareness for next generation network. We proposed to

address this problematic by using a network device as

shown in Figure 1. The main objective is to embed a video

adaptation processing engine in an external device that

possesses monitoring capabilities. Then, this device will be

able to detect and adapt the video contents depending on the

user’s context (network load, terminal used …), making it

into a content/context aware network device.
This system offers a video distribution that is seamless

for both the consumer and the provider. Indeed, the

consumer can access video stream based only on its content

without worrying on its own capability to read it. Moreover,

the content provider does not have to take into account

context parameters when asked for a video stream. This

feature is achieved by embedding video adaptation

capabilities in network devices.

For scalability purpose, the platform will be implemented

in last hop devices that possess a better and quicker

knowledge of the end user context. However, those devices

are mainly gateways with network switching responsibilities

(such as devices located along with 3G antennas or home

gateways) having low-computation performances. This

explains why real-time video adaptation solution
1
 proposed

in this paper was developed under low-computation

complexity and low-cost constraints.

This article is organized as followed. In Section 2, the

system design will be detailed. Heterogeneous video

adaptation will arouse as the main issue of this system. A

state of the art of already existing solution will be presented

and a lack of generic hardware solution will be pointed out.

In Section 3, our framework that overcomes this issue will

be presented before to show a design example in Section 4.

Conclusion and future works will be drawn in Section 5.

2. VIDEO ADAPTATION SYSTEM

2.1. System design

In the proposed system presented in Figure 2, the gateway,

located between the video source coming from the Internet

and the device embedded in the end user terminal,

transcodes the video stream.

1 Work supported by the French project ARDMAHN within French

National ARPEGE ANR Program http://www.ardmahn.org and by the

European project ALICANTE within EU FP7 ICT, under grant agreement
n° 248652. http://www.ict-alicante.eu.

20th European Signal Processing Conference (EUSIPCO 2012) Bucharest, Romania, August 27 - 31, 2012

© EURASIP, 2012 - ISSN 2076-1465 2218

Figure 2: System Overview

Home
Gateway

General
purpose

processor N
et

w
or

k
In

te
rf

ac
e

N
et

w
or

k
In

te
rf

ac
e

FPGA
accelerator

End User
Terminal

Low Power
processorN

et
w

or
k

In
te

rf
ac

e

Video Decoder
(ASIC/ASIP)

Display
Controller

video
source

video
display

modified video stream

configuration protocol

Figure 1: Generic Network Adaptation Framework

N e t w o r k D e v i c e

(H o m e G a t e w a y)

E n d U s e r

T e r m i n a l

A d a p t e d V i d e o

S t r e a m

C o n f i g u r a t i o n

p r o t o c o l

V i d e o

S t r e a m
I n t e r n e t

Table 1: CODEC comparison

Adaptation is activated and configured according to the

embedded device decoding capabilities. A communication

protocol is used by the end user terminal to provide the list

of its supported standard. This system requires two major

evolutions for current systems:

1. To adapt the video characteristics, a modified home

gateway is required. This resource that links the

embedded device to the Internet (or another video

provider), needs real-time video adaptation capacity. In

the proposed approach, this task is implemented using a

hardware accelerator (FPGA).

2. To enable and control the video adaptation process, the

embedded device must be able to inform the modified

home gateway of the supported standard and

characteristics (mainly screen size). This feature is

implemented using a negotiation protocol.

2.2. Real-time video heterogeneous transcoding

Video adaptation is a complex task requiring high-

performance resources. However, these resources (like DSP

processors) are expensive and not available in home-

gateway products. Many approaches described in the

literature have been proposed to reduce computation

complexity of video adaptation while keeping a high video

quality [1][2].

Video stream adaptation has been studied in literature to

adapt video content according to the embedded devices

characteristics (display size [3]-[5], implemented video

codecs [6]-[8], etc.), and to reduce network load [9]-[11]
(avoiding network packet drops). In a previous work [12]

we studied the impact of the video spatial resolution on the

power consumption of the decoding process at the terminal

end.

Most of the available devices (TV, Smartphone …)

have dedicated video decoding chips. Thus, the terminal

device supports only a limited list of standards. Hence, it is

mandatory to be able to deliver the wanted video into a

proper standard while also being able to adapt its feature

(bitrate, frame resolution). A codec comparison [13]

showing the different characteristic of usual (Table 1)

outline this fact.

Toward this issue, heterogeneous transcoders have been

proposed. An h.263 to h.264 pixel domain frame transcoder

has been proposed [14]. This transcoder can be used to solve

the MPEG-2 to h.264 issue [8]. The MPEG-2 to h.263

problematic has also been addressed [6].

Adaptation – i.e. changing video parameters such as

quantizer scale, frame resolution … – is almost always

separated from transcoding – i.e. changing video CODEC.

A downscaling process for h.26x (x = 1, 2 or 3) [4] and a

rate control system for MPEG-2 to MPEG-4 transcoding

[15] has been proposed. Adaptation has been addressed

either as an homogeneous transcoding process (same

CODEC) or as a specific heterogeneous transcoding process

using features of the addressed CODECs. To authors’

knowledge, no generic adaptation has been proposed that

could be used for any kind of transcoding using a uniform

approach.

3. A GENERIC HARDWARE VIDEO

ADAPTATION FRAMEWORK

We propose to use a video adaptation framework shown in

Figure 3. This framework aims at reusing decoder and

encoder previously developed by or bought to a third party.

One work motivation comes from that no generic low-

computation complexity approach to transcode a video

exists. Let’s consider n input codecs, p output codecs and q

video adaptation techniques. There exists up to

dedicated approaches for video transcoding. Implementing

such number of video transcoding chain is not realistic. To

reduce system development complexity we propose to

2219

Figure 4: Generic Adaptation Process

S p a t i a l

D o w n s c a l i n g
B i t r a t e A d a p t a t i o n

D a t a

M e t a d a t a

D a t a

M e t a d a t a

D a t a

M e t a d a t a

Figure 3: Adaptation Framework

divide the video adaptation processing chain in three distinct

stages:

1. The first stage is dedicated to partial video

decompression of the input video stream into an

intermediate video format.

2. The second stage is dedicated to video parameters

adaptation. This stage works on the intermediate video

format to change the video characteristics (spatial

resolution, framerate, quantizer scale …).

3. The third stage is dedicated to video stream

reconstruction from intermediate video format.

The main concept is to have a generic process that

performs video adaptation in an intermediate format and to

let the heterogeneous part inside the converter. By

converting to/from the intermediate format, the transcoding

architecture frees the decoding and the encoding parts. Any

decoder will be able to provide data for any encoder because

of the format converter. This approach helps to reduce the

implementation complexity through the usage of an internal

video format. Indeed, implementing video adaptations from

codec ci1 to codec co1 using video parameters p1 and p2 only

requires the implementation of hardware modules ci1, co1, p1

and p2. This approach provides a lower complexity

compared to dedicated processing developments performed

according to literature (ci1+p1+co1) and (ci1+p2+co1) must be

implemented.

Moreover, FPGA devices provide partial hardware

reconfiguration opportunities during runtime [16]. This

reconfiguration possibility, coupled with our proposed

approach, allows short reconfiguration time to switch from a

video adaptation process to another one. It means that it

could support multiple users or to change during video

viewing some stream characteristics by fetching the

different part of the transcoding chain (decode-adapt-

encode) in a pool of available design.

Once a codec has been developed with its intermediate

format converter, it can be added to the pool of available

codec supported by the adaptation platform. The adaptation

does not need to be re-developed. The interconnection with

already developed codec is seamless and saves a lot of

development time as well as it adds a lot of flexibility.

3.1. The intermediate format

Intermediate format was specified according to commonly

used video standard requirements. The most complex video

standard is h.264. Indeed, the motion estimation is ¼ pixel,

and its motion predictions are applied to pixel blocs which

can have different sizes.

Using such video characteristics create the intermediate

format authorize h264 to h264 video adaptation with no

information loss. Moreover, other video codecs such as

MPEG-2 or MPEG-4 that have lower requirements will use

only a subset of the intermediate format functionalities

The intermediate format should be chosen in order to

support the maximum feature of every CODEC so that the

adaptation remains optimum. As shown on table 1,

standards do not always use the same transform. We need a

common domain to process data. The pixel domain is the

obvious choice. Since h.264 has a ¼ pixel precision, the

adaptation shall posses a ¼ pixel precision.

The smallest vector Block size is 4x4 for h.264 thus it

will be the granularity of the generic adaptation process.

With each blocks, information will be added such as motion

vector, quantizer scale …

2220

Figure 6: Decoder to Intermediate Format Converter

B l o c k C o u n t e r
M a c r o B l o c k

D i v i d e r

M a c r o b l o c k

D a t a

M a c r o b l o c k

M e t a d a t a

M a c r o b l o c k

D a t a

M a c r o b l o c k

M e t a d a t a

4 x 4 D a t a

 B l o c k s

M e t a d a t a

Figure 5: Spatial Downscaling Process

B l o c k R e s i z e r

B l o c k M e r g e r

2 x 2 D a t a B l o c k s

B l o c k B u f f e r

4 x 4 D a t a

B l o c k s

M e t a d a t a

4 x 4 D a t a

 B l o c k s

M e t a d a t a

4 x 4 D a t a

B l o c k s

M e t a d a t a

Figure 7: Macroblock Divider

M a c r o B l o c k

D i v i d e r

M e t a d a t a M e t a d a t a M e t a d a t a M e t a d a t a

3.2. Generic Adaptation Process

The generic Adaptation Process (Figure 4) is composed of a

spatial downscaling process and a bitrate adaptation process.

Both processes are triggered according to the required

adaptation and can implement almost any algorithm found

in the literature.

The bitrate adaptation mainly focuses on finding the

proper quantizer scale value to adjust the bitrate of the

encoded video to the required bitrate. The data and metadata

format do not play a role in the process and thus the bitrate

adaptation process will not be tackled in this paper.

The spatial downscaling process is shown on Figure 5.

This process is composed by a Block Resizer process, a

Block Merger process and a Block Buffer process.

The Block Resizer computes the resizing (e.g. 4x4 blocks

into 2x2 blocks for a ½ downsizing). The Block Merger

merges the resized block into 4x4 blocks and merges the

metadata to obtain the proper intermediate format. For a ½

downsizing example, four 2x2 blocks with their own

metadata (each block his own) will become a unique 4x4

block with its metadata.

Techniques to merge information exist in the literature

[1]. This design allows any kind of spatial downsizing

techniques.

The use of Block Buffer is important for the case of

dealing with color component. A macro-block is composed

of luminance blocks and chrominance blocks in a proper

order. The Block Merger and Block Resizer alter this order.

The Block Buffer is in charge to assure this good color order.

For example, the generic downscaling process input is

composed of 16 luminance blocks then 8 chrominance

blocks. After the Block Merger the data flow will be 4

luminance blocks then 2 chrominance blocks. The role of

the Block Buffer is to put this flow back to 16 luminance

blocks then 8 chrominance blocks.

4. MPEG-2 FORMAT TO INTERMEDIATE

FORMAT TRANSLATION

Our implementation of an MPEG-2 transcoder is made of

three parts: the decoder path, the adaptation process and the

encoder path.

Our decoder path gives data in 16x16 macro-blocks in

YCbCr 4:2:0 format. Each macro-block is composed of 6

sub-blocks of 8x8 pixels (4 for luminance and 2 for

chrominance). The information along the macro-blocks is

mainly composed of Quantizer scale, motion vector and

Macro-block type. The same format is used for the input of

the encoder path.

4.1. Decoder format to intermediate format

The converter from the decoder format to the intermediate

format is shown on Figure 6. It contains a Block Counter

and a Block Divider.

A video cannot contain a non-integer number of macro-

blocks per line or column. The role of the Block Counter is

to assure by removing/adding blocks that there is an integer

number of macro-blocks per line and column in the adapted

frame. For instance, in a downsizing by 2, the original frame

should have an even number of macro-block. If this

hypothesis is not fulfilled, the Block Counter will remove

one macro-block at the end of the line/column.

Then the converter has to split each macro-block into 4x4

blocks with the associated metadata. This is the role of the

Macro-block Divider. The 4 8x8 luminance blocks are split

into 16 4x4 data blocks, each of them with a copy of the

metadata of the macro-block. Then the 2 8x8 chrominance

blocks are split into 8 4x4 data blocks, also with a copy of

the metadata as shown in Figure 7.

4.2. Intermediate format to MPEG-2 encoder format

The converter from the intermediate format to the MPEG-2

format is in charge of merging 4x4 blocks and their

metadata into a 4:2:0 16x16 macro-blocks with its metadata.

On the data path, the converter is reordering the data in the

right order. On the metadata path decision, algorithms have

to be applied such as: (a) motion vector estimation, (b)

quantizer scale and (c) macroblock type. Algorithms can be

found on transcoding overviews [1]. The ¼ motion vector

pixel precision will be rounded to a ½ pixel precision if

needed.

2221

Figure 8: Vector Block Decision

A l l M V s ! =

m v 1
m v 2

m v 3 m v 4

m v 2 = m v 4 m v 3 = m v 4

m v 1 = m v 2

a n d

m v 3 ! = m v 4

m v 1 = m v 2

a n d

m v 3 = m v 4

m v 1 ! = m v 2

a n d

m v 3 = m v 4

m v 1 = m v 3

a n d

m v 2 ! = m v 4

m v 1 = m v 3

a n d

m v 2 = m v 4

m v 1 ! = m v 3

a n d

m v 2 = m v 4

m v 1 = m v 3 = m v 2 = m v 4

4.3. Other CODEC considerations

In order to process other CODECs, the converter will almost

look alike (depending on the encoder and decoder

implementation). The h.264 possesses two main features

which are not commonly shared with the other CODEC that

need a special care: (a) the vector block size and (b) the intra

prediction. The vector block size can be easily handled. The

intermediate format grants a motion vector for each 4x4

block. Hence, to compute the vector block size, a motion

vector comparison with the neighbors is enough as shown in

Figure . The vector block size can either be 4x4, 4x8, 8x4 or

8x8. If 8x8 blocks is created then the process runs another

time in order to obtain the coarser 16x8, 8x16 and 16x16.

5. CONCLUSION AND FUTURE WORKS

In this paper, we addressed the processing chain

development issues in video adaptation. These issues are

mainly time to market while addressing for multi codec

adaptation. We proposed a framework that understands the

video adaptation process as three paths: the decoding path,

the adaptation path and the encoding path. Through our

framework, we propose to translate data coming out of the

decoding path or coming to the encoding path into an

intermediate format. This intermediate format enables the

development of the three paths seamlessly which reduce

greatly the time to market. Being seamless regarding the

encoding and the decoding paths is the key feature for

heterogeneous processing chain development.

In future works we aim at validating this framework by

adding an h.264 codec in order to allow homogeneous and

heterogeneous resizing for h.264 and MPEG-2. This work

will allow us to tackles intermediate format issues not yet

discovered. In a second time, we aim at evaluating the

performance of an on board version. The cost in silicon

space and throughput impact of such a framework will be

evaluated. The support of a third party codec is one of the

next steps to refine the methodology of the framework.

6. REFERENCES

[1] I. Ahmad, X. Wei, Y. S. & Zhang, Y.-Q. “Video Transcoding:

An Overview of Various Techniques and Research Issues

IEEE Transactions on Multimedia, October 2005.

[2] Y. Xin, C-W. Lin and M-T. Sun “Digital Video Transcoding”

Proceedings of the IEEE, Vol. 93, No. 1, January 2005

[3] A. Vetro et al. “Complexity-Quality Analysis of Transcoding

Architectures for Reduced Spatial Resolution” IEEE Trans. on

Consumer Electronics, vol. 48, no. 3, pp. 515-521, 2002.

[4] B. Shen, I. K. Sethi andB. Vasudev, “Adaptive motion-vector

resampling for compressed video downscaling” IEEE Trans.

on Circuits And Systems For Video Technology, 1999.

[5] P. Yin et al. “Drift Compensation for Reduced Spatial

Resolution Transcoding” IEEE Trans on Circuits and Systems

for Video Technology, vol. 12, no. 11, pp. 1009-1020, 2002.

[6] N. Feamster and al., "An MPEG-2 to H.263 transcoder". In

SPIE Voice, Video and Data Communications Conf., 1999.

[7] J. Xin, A. Vetro and H. Sun “Converting DCT Coefficients to

H.264/AVC”. IEEE Conference on Multimedia (PCM),

Lecure Notes in Computer Science, Vol. 3332, pp. 939, 2004

[8] H. Kalva, B. Petljanski and B. Furht “Complexity Reduction

Tools for MPEG-2 to H.264 Video Transcoding” WSEAS

Transaction on Information Science & Applications, Vol. 2,

pp 295-300, March 2005.

[9] Z. Lei and N.D. Georganas, "A rate adaptation transcoding

scheme for real-time video transmission over wireless

channels", Signal processing. Image communication, vol. 18,

pp. 641-658, 2003.

[10] Eleftheriadis, A. & Anastassiou, D. Meeting “Arbitrary QoS

Constraints Using Dynamic Rate Shaping of Coded Digital

Video”. In the 5th International Workshop on Network and

Operating System Support for Digital Audio and Video, 1995

[11] M. Lavrentiev and D. Malah, "Transrating of MPEG-2 coded

video via requantization with optimal trellis-based DCT

coefficients modification". In Proceedings of EUSIPCO

Vienna, Austria, September, 2004.

[12] W. Aubry, B. Le Gal, D. Dallet, S. Desfarges, D. Negru “A

system approach for reducing power consumption of

multimedia devices with a low QoE impact” ICECS 2011. 11-

14 Dec. 2011.

[13] J. Golston,and A. Rao “ Video Compression: System Trade-

Offs with H.264, VC-1 and Other Advanced CODECs” Texas

Instruments, white paper, Aug 2006.

[14] J. Bialkowski, M. Barkowsky and A. Kaup “Overview of

Low-Complexity Video Transcoding from H.263 to H.264”

IEEE International Conference on Multimedia and Expo,

2006. 9-12 July 2006.

[15] Y. Sun, X. Wei and I. Ahmad “Low-Delay rate-control in

video transcoding” ISCAS 2003, 25-28 May 2003.

[16] F. Duhem, F. Muller and P. Lorenzini, "FaRM: Fast

Reconfiguration Manager for Reducing Reconfiguration Time

Overhead on FPGA" In proceedings of the ARC'11

Conference, Volume 6578/2011, pp. 253-260, 2011.

2222

