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ABSTRACT

We present ToroStream, our P2P video streaming protocol

designed around Network Coding (NC), and we investigate

its applicability to low-delay applications such as live video

streaming and videoconferencing. While NC offers several

benefits for P2P content distribution, the coding operations

at the network nodes introduce a delay that is detrimental

for low-delay communications. To this end, we designed a

push-based packet scheduling mechanism devised to mini-

mize the communication delay. Furthermore, our protocol

is designed around a low computational complexity class of

rateless codes that enable us to experiment on real networks

where the nodes have limited computational capabilities.

That enables us to experiment with two typical low-delay

applications such as live video streaming and videoconfer-

encing in a realistic network scenario. The experiments show

that our protocol enables continuous playback with limited

initial delay and we point out the issues that NC poses in

low-delay applications.

Index Terms— P2P, Network Coding, Low-Delay

1. INTRODUCTION

Network Coding (NC) [1] has emerged as an interesting so-

lution for P2P communications. We consider a network sce-

nario where one source node wants to distribute a message to

multiple cooperating receivers, the peers. The source node

divides the message in blocks of equal size, for example the

size of a network packet, and transmits linear combinations of

such blocks to the peers. The peers store the encoded pack-

ets and exchange linear combinations of the received packets

among themselves. Once a peer has collected enough lin-

early independent packets, it solves the related system of lin-

ear equations and decodes the message. The recombinations

at the nodes, which are the distinctive characteristic of NC,

improve the performance of P2P media distribution architec-

tures in many ways. First, all the packets are equivalent to

the end of recovering the original message: that solves the

issue of the asymmetric popularity of network packets, also

known as the rarest-piece issue. Second, the recombinations

reduce the probability to transmit redundant information even

if loops are present in the network. That makes possible to

organize the nodes into an unstructured overlay, which makes

the communication more resilient to network failures and peer

churning. Third, the network nodes do not need to explicitly

request specific parts of the message, which saves time and

bandwidth (push-based packet scheduling.) Finally, the peers

can start to transmit packets before they have recovered the

message, which is a major edge in delay-sensitive applica-

tions such as video streaming. The benefits of NC for P2P

media distribution have been highlighted before. For exam-

ple, Wang and Li [2] described a P2P video streaming pro-

tocol designed around a push packet scheduling mechanism,

showing that NC increases the streaming throughput and re-

duces the initial buffering delay, improving the quality of ex-

perience of the user. Our experiments [3] with a push-based

video streaming architecture based on multiple trees showed

reduced buffering times together with improved resilience to

ungraceful peers departures.

The coding operations at the network nodes introduce

however a detrimental delay for videoconferencing applica-

tions and the computational complexity of such operations

prevents to assess the impact of such delay on the user’s

quality of experience in real networks where the nodes have

limited computational capabilities. Due to the computational

requirements of NC, most of the existing research in the field

of NC-based communications relies on simulations over syn-

thetic testbeds. For example, the authors of [2] experimented

on a cluster of high performance servers connected on a local

area network that provided the required computational power.

While such experiments suggest that NC enables reduced

buffering times, it is not totally clear whether such conclusion

holds and to which extent in real networks where the packets

are affected by erasures, delays and out of order delivery.

In this paper we present ToroStream, our P2P protocol for

live video streaming designed around NC. Our protocol is de-

vised to minimize the communication delay thanks to a push-

based packet scheduler and an efficient feedback mechanism.

The protocol is designed around a family of low-complexity

rateless codes that we introduced in [4], which enables us to

experiment on a real network where the nodes have limited

computational capabilities. We perform live video streaming

experiments and we evaluate the quality of the video deliv-
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ered to the users as a function of initial buffering time and

the bandwidth contributed by the source node. Our exper-

iments show that our protocol enables continuous playback

with little startup delay even on lossy networks. Then, we

explore a videoconferencing application showing that, while

NC does allow for low-delay communications, there are is-

sues that need to be addressed in order to efficiently use the

network resources.

2. THE TOROSTREAM PROTOCOL

2.1. Network Coding with Rateless Codes

In this section, we overview the basic principles of NC with

rateless codes. The source node holds a video content, which

is subdivided in chunks of data called generations. The source

divides each generation into a sequence (M0, ...,MN−1) of

N data blocks of identical size, where N is called genera-

tion size. The source transmits linear combinations of the

blocks of a generation as X =
∑N−1

i=0
giMi, where the sum

operator is the bit-wise XOR. The vector g = (g0, ..., gN−1)
is called encoding vector and gi ∈ GF (2) is drawn so that

P{gi = 1} = 1

2
. The source transmits the packet P (g,X)

that contains the encoded payload X plus the corresponding

encoding vector g so that the packet can be decoded at the

receiver node [5].

The peer nodes receive encoded packets and transmit linear

combinations of the received packets. Every time a transmis-

sion opportunity arises for a node, the node selects some of

the received equations and recombines them into a new packet

which is transmitted to the network. Packet recombination

serves the fundamental purpose of increasing the likelihood

that a packet transmitted by a node is linearly independent

from all the packets previously collected by the receiver node.

If a packet is linearly independent from all the previously re-

ceived packets, the packet is said to be innovative.

The peer nodes receive encoded packets and recover the cor-

responding generation solving a system of linear equations.

Once a node has collected N innovative packets, the node

solves the corresponding system of linear equations with

Gaussian Elimination and recovers the original message. In

the ideal case, all the packets received by a node are inno-

vative and the generation is recovered after N packets have

been received. In practice, not all the received packets are

innovative due to the random encoding process at the source

and the random recombinations at the peers. Therefore, it is

usually necessary to receive N ′ > N packets to recover the

generation. Assuming that a node receives packets at a con-

stant rate, the time required to decode a generation, and thus

the communication delay, decrease if the received packets are

likely to be innovative.

2.2. Peer Discovery and Overlay Management

The discovery of the nodes in the network and their organi-

zation into an unstructured overlay of peers is managed by a

central tracker. The tracker maintains a list of all the peers in

the overlay and listens for join requests. A node that wants to

join the overlay contacts the tracker and the tracker adds the

node to the list. The tracker replies to the node with a list of

randomly selected addresses of nodes that are already in the

overlay. The node starts a separate handshake procedure with

each address found in the list, upon which the two nodes be-

come peers. Once two nodes are peers, they start to exchange

video packets without further delays thanks to the embedded

feedback mechanism described in the following. Peers peri-

odically exchange keepalive messages to detect network fail-

ures and avoid transmitting packets to nodes that have become

unreachable. If a node does not receive any keepalive from a

peer for a given amount of time, that node is removed from

the list of the peers and no mode packets are transmitted to it.

2.3. Feedback with Embedded Decoding Vectors

Fig. 1. The video stream as a sequence of generations.

Figure 1 shows a video sequence subdivided in several

generations of data. A generation corresponds to one or mul-

tiple self-decodable units of video such as Groups of Pictures

(GoPs.) For the sake of simplicity, in the following we assume

that the video is encoded at constant bitrate, thus all gener-

ations have approximately equal size N and identical play-

back duration Ct. Every Ct seconds, the source node fetches

one generation from the video source (e.g.: a pre-encoded se-

quence.) For the following Ct seconds, the source encodes

and distributes packets only for that generation, which is de-

fined as the source position in the video stream. Before start-

ing the playback, a node buffers tb ≥ Ct seconds of video.

After tb seconds of buffering, the node attempts to play the

first generation of video. If the generation is not decoded prior

to its playback deadline, the screen freezes for the duration of

the missing generation and the quality of the video experience

degrades. EveryCt seconds, the peer updates its playback po-

sition, attempts to play another generation and so on for the

rest of the streaming session.

The set of generations encompassed between the position

of the source in the video stream and the playback position

of a node is known as the decoding region of the node. The

array of binary variables that describe the status (decoded or

not decoded) of the generations within the decoding region

of a node is defined decoding vector. The decoding region

usually corresponds to a few generations of video, so the rel-

ative decoding vector can be represented with few bits only.
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For example, if the buffering time is equal to five seconds

(i.e., tb = 5s) and each generation of video corresponds to

1 second of video (Ct = 1s), the encoding vector can be

represented with exactly five bits. The reduced size of the en-

coding vector makes possible to embed it in each transmitted

packet with a negligible increase in the signaling overhead.

For example, in the case of an Ethernet network where the

frame size is 1500 bytes, the size of an encoded packet would

be about 1000 bytes while the encoding overhead would be

just 5 bits, which yields to an overhead of ∼ 10−3. Specif-

ically, a decoding vector is embedded in the message that

two nodes exchange during the handshake, which enables the

nodes to start transmitting video packets right after the hand-

shake without the need to exchange buffermaps. The decod-

ing vector received during the handshake is stored and ex-

ploited at the moment of transmitting a packet as explained

in the following. Every time a node decodes a generation, it

sends an appropriate stop message to all its peers, which up-

date the stored decoding vector relative to the node. However,

stop messages could be lost and the peers of a node may miss

important updates about the decoding vectors of its peers. To

this end, a decoding vector is embedded in each packet that a

node transits to its peers. The received decoding vectors are

exploited by the peers to compute appropriate packet schedul-

ing policies, as explained in the following.

2.4. Push-Based Packet Scheduling

Each node periodically transmits a packet and is up to the

packet scheduler to decide which peer to address and for

which generation to transmit the packet. Each time a trans-

mission opportunity arises for a node, the packet scheduling

Algorithm 1 is executed. A round-robin policy is enforced

to guarantee that the limited output bandwidth of the node is

fairly allocated among its peers. Then, the scheduler checks

the last decoding vector received by the peer. If the peer has

already decoded all the generations in its decoding region,

another peer is selected in round-robin fashion. Otherwise,

the generation that is closer to the playback deadline is se-

lected for transmission to account for a urgency principle.

At this point, the scheduler recombines some of the received

equations for the selected generation, transmits the packet

and waits for the next transmission opportunity.

Algorithm 1 Round-Robin Packet Scheduler.

1: for each peer P i do

2: check last decoding vector received by P i

3: if P i has decoded all generations

4: select peer P i+1 and go to line 2

5: select generation closest to playback deadline

6: recombine received packets for the generation

7: transmit the recombined packet

8: break

9: end for

3. EXPERIMENTAL EVALUATION

In this section, we experiment with our P2P video stream-

ing protocol in two different network scenarios. First, we

consider a controlled conditions testbed composed of several

workstations connected via gigabit switch that provides the

bandwidth necessary to experiment with a large number of

nodes in error free network conditions. Then, we experiment

on PlanetLab [6], a network composed of hundreds of Internet

nodes that enables us to experiment with packet erasures, de-

lays and out-of-order delivery. For each network scenario, we

consider two different low-delay applications. First, we con-

sider a live video streaming application where the maximum

delay the user can endure corresponds to a few seconds of

video buffering. Then, we consider a videoconferencing ap-

plication where the delay constraints are even tighter and are

well below one second. We evaluate the quality of the video

perceived by the user as a function of various combinations

of protocol parameters.

3.1. Controlled Conditions Simulations

First, we consider a live video streaming application where

one source node distributes a live video stream to hundreds of

users. We investigate the relationship between buffering time

and quality of the video perceived by the user. The buffering

time corresponds to the initial delay that the user has to en-

dure before the playback starts. From the user’s perspective,

it is desirable that the initial delay that has to be endured is

as small as possible. On the other hand, a high buffering time

reduces the likelihood that the screen freezes because a gen-

eration could not be decoded ahead of its playback deadline.

The source node streams a 10 minutes long H.264/AVC video

sequence encoded at Bv = 500 kbit/s which is subdivided in

generations of 1 second each (i.e., Ct = 1s.) The network

packets are 1250 bytes each, which yields to generations com-

posed by N = 50 packets. We experiment with a number

of peer nodes Np that ranges from 100 to 300 to evaluate the

ability of our protocol so cope with large the population sizes.

The output bandwidth Bs of the source node is dependent on

the number of nodes in the network and is constrained so that

each peer receives no more than 10% of the packets from the

source. The output bandwidth of the peer nodesBp is equal to

the encoding bandwidth of the video (Bp = Bv). This setup

guarantees that the average bandwidth Bin = Bs

Np

+ Bv in

input to a peer node is higher than the encoding bandwidth of

the video (i.e., Bin ≥ Bv ,) so that a node is able to collect the

packets necessary to rebuild a generation in less that Ct. The

quality of the video delivered to a peer node is measured in

terms of Continuity Index (CI), which is defined as the frac-

tion of generations that could be decoded prior to the playback

deadline. The effect of the buffering time on the CI is eval-

uated considering different buffering times tb ∈ [1, 2, 3, 4, 5]
seconds range. Figure 2 shows the average CI measured at
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the peer nodes for different Np and tb. The figure shows that,

for Np = 100, 1 second of buffering is enough to achieve a

CI equal to one. As the population of peers increases in num-

ber, the average propagation delay between the source and

the peer nodes increases as well. Therefore, as the number

of peers in the overlay increases to 200 and 300, the buffer-

ing time required to achieve a CI equal to one increases to 2

and 3 seconds respectively. These simulations show that out

P2P protocol enables almost continuous video playback with

limited initial buffering time. The lower bound to the buffer-

ing time seems to be related to the average delay required by

a peer to collect the packets required to decode a generation,

which depends on the link delay between the peers and the

number of nodes in the network.
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and number of nodes in the network (live streaming.)

Then, we consider a video conferencing application

where one source node shares a video stream with 10 receiver

peers. In such application, the maximum end-to-end delay

tolerable by the user to achieve quasi-realtime communica-

tions is below half second. To this end, we fix the buffering

time to be equal to the generation time (i.e., tb = Ct) and

we experiment with Ct ∈ [0.5, 0.25, 0.125] seconds, which

yields to generation sizes of N ∈ [25, 13, 7] respectively. Fur-

thermore, we gradually increase the output bandwidth of the

source node from 10% to 40 % of the total upload bandwidth

available in the network. Figure 3 shows the average CI at

the peers as a function of the bandwidth contributed by the

source node and the size of the generation, where the latter

determines the end-to-end delay.

The figure shows that our P2P protocol based on NC enables

almost uninterrupted video playback even when the delay is

below 0.5 s. However, the figure also shows that, as Ct de-

creases, more upload bandwidth is required to recover a gen-

eration. In fact, the probability that a node is able to decode

a generation after receiving N packets decreases as N de-

creases. Therefore, more upload bandwidth is required to

achieve a CI close to 1 as the generation size N decreases.

Figure 4 shows the minimum bandwidth that the source node

must contribute to each peer with respect to the video band-

width to achieve a CI equal to one. The figure shows that,
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and source bandwidth (videoconferencing application.)

for Ct = 0.125s, the source node must provide one packet

out of two to each peer node in the network. Thus, while this

experiment shows that our P2P protocol is suitable for nearly

realtime video communications provided that the source node

must be able to sustain an increased output bandwidth.
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Fig. 4. Mininum bandwidth contributed by source node for

continuous playback (CI=1) in videoconferencing scenario.

3.2. Planetlab Simulations

First, we consider a video streaming application where the

nodes can tolerate no more than five seconds of video buffer-

ing. As for the experiments shown in Figure 2, we stream a

video sequence encoded at Bv = 500 kbps which is subdi-

vided in generations of Ct = 1s. The testbed consists of 150

randomly selected PlanetLab nodes that host the peers, plus

one node located at the Politechnic of Turin that hosts the

source. Due to the physical constraints on the output band-

width available at the source node, we could not match the

10% of packets provided by the source of the testbed experi-

ments. Therefore, the experiments are performed for a source

node output bandwidth Bs equal to 5 and 2.5 Mbps, which

correspond to 6.6% and 3.3% of the packets necessary to each

peer to recover a generation. To compensate the reduced out-

put bandwidth of the source, we increased the buffering time

tb to 5 s. Figure 5 shows the results of the experiments (the

average CI is equal to 0.97 for Bs = 5Mbps and 0.96 for
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Bs = 2.5Mbps.) Most nodes are able to recover the whole

video sequence, some exhibit a CI lower that 90% and a few

could not decode any generation. The analysis of the log

files showed that the input links of these latter nodes are af-

fected by high packet loss rates, which results in insufficient

received packets to decode the generations. Due to the round

robin packet scheduling policy implemented by our protocol,

the same amount of packets is transmitted to every node re-

gardless the actual packet loss probability that affects its input

link. This experiment suggests that accounting for the loss

probability of the input link of every node could improve the

performance of the protocol. Nevertheless, this experiment

also suggests that it is possible to serve more than 100 nodes

with an average CI above 90% and the source note providing

just 5% of the packets necessary to recover the video.
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Then, we consider a video conferencing application with

a reduced number of nodes Np = 20. As for the experiments

reported in Figure 3, we consider Ct values equal to 0.25, 0.5

and 1 second and tb values multiple of Ct. However, as we

have previously shown in Figure 4, the bandwidth required

to decode the video soars as Ct decreases. the output band-

width of the peer nodes Bp is increased above Bv to evaluate

whether the extra bandwidth could be provided by the peer

nodes rather than by the source, whereasBs is fixed to 2 Mbps

(i.e., the source contributes at most 20% of the packets.) Fig-

ure 6 shows the results of the simulations. A CI above 95%

could be achieved for tb = 250ms, however a CI close to 1 is

achieved only for tb ≥ 0.5s.

4. CONCLUSIONS

We presented our P2P protocol for video streaming designed

around NC and evaluated its performance both on a controlled

conditions testbed and on the realistic PlanetLab testbed. The

experiments with a live video streaming application showed

that our protocol enables to support hundreds of users with

a small initial buffering. The experiments with a videocon-

ferencing application also showed that NC-based P2P video

streaming is suitable for low-delay video communications.

However, our experiments also highlighted that low-delay
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and the peer nodes bandwidth (videoconferencing scenario.)

communications can be achieved only at the price of high

bandwidth requirements. Such results prompts further re-

search towards more efficient encoding schemes tailored

specifically for low delay applications such as videoconfer-

encing.
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