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ABSTRACT
In this paper, a new supervised source separation system is in-
troduced. The Constant-Q Transform (CQT) of an audio signal
is first analyzed through an algorithm called Blind Harmonic
Adaptive Decomposition (BHAD). This algorithm provides an
estimation of the polyphonic pitch content of the input signal,
from which the user can select the notes to be extracted. The
system then automatically separates the corresponding source
from the audio mixture, by means of time-frequency masking
of the CQT. The system has been evaluated both in a task of
multipitch estimation in order to measure the quality of the
decomposition, and in a task of user-guided melody extraction
to assess the quality of the separation. The very promising
results obtained highlight the reliability of the proposed model.

Index Terms— Audio Source Separation, Harmonic De-
composition, PLCA, NTF

1. INTRODUCTION

Spectrogram decomposition techniques into meaningful basic
elements such as Nonnegative Matrix Factorization are now
widely used to perform monaural source separation of audio
mixtures [1]. However, performing this task in a completely
blind way remains challenging, basically due to the difficulty
of clustering the basic elements that belong to the same source.
To overcome this problem, one solution is to inform the sep-
aration, e.g. whether with the aligned score of the audio [2]
or with user-specifiable constraints over the present sources in
the mixture [3].

In this paper, another approach is followed, similar to [4],
where no side information is needed (the decomposition is
blindly performed) but where the user can cluster the basic
elements of the sources to be separated. In fact, the proposed
system allows the user choosing the notes to be extracted via an
intuitive Graphical User Interface (GUI) showing an estimation
of the polyphonic pitch content of the input signal. This work
relies on [5], where it was proven that efficient translation-
invariant models for music analysis on the CQT of an audio
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signal can be directly applied to source separation. Thus, the
article is organized as follows: first, the statistical framework
that is employed to model the noise and the polyphonic part
of a CQT is described in section 2. We present the algorithm
for estimating the model parameters in section 3. In section 4,
a new sparseness prior is introduced in order to constrain the
parameters to converge towards a meaningful solution. The
application to source separation is exposed in section 5, where
the GUI is described and the separation process explained.
Finally, we present two different evaluations of the method in
section 6 and conclude in section 7.

2. PROBABILISTIC MODEL FOR THE INPUT CQT

The framework on which the presented model relies is the
Probabilistic Latent Component Analysis (PLCA) following
the example of [6]. It is a probabilistic tool for non-negative
data analysis which offers a convenient way of designing spec-
trogram models and introducing priors on the corresponding
parameters. Let us consider the absolute value of the CQT
𝑋𝑓𝑡 of an audio signal 𝑥, denoted 𝑉𝑓𝑡 = |𝑋𝑓𝑡|. In PLCA, it is
modeled as the histogram of 𝑁 independent random variables
(𝑓𝑛, 𝑡𝑛) ∈ Z × J1;𝑇 K, which represent time-frequency bins,
distributed according to 𝑃 (𝑓, 𝑡) (we suppose that 𝑉𝑓𝑡 = 0 for
𝑓 /∈ J1, 𝐹 K). 𝑃 (𝑓, 𝑡) can then be parameterized according
to the desired decomposition of 𝑉𝑓𝑡 and the parameters can
be found by means of the Expectation-Maximization (EM)
algorithm. In the inherent model of the BHAD algorithm (that
we call the BHAD model), a first latent variable 𝑐 is intro-
duced in order to decompose 𝑉𝑓𝑡 as a sum of a polyphonic
harmonic signal (in this case, 𝑐 = ℎ) and a noise signal (𝑐 = 𝑛)
(the notations 𝑃ℎ(.) and 𝑃𝑛(.) are used for 𝑃 (.|𝑐 = ℎ) and
𝑃 (.|𝑐 = 𝑛)):

𝑃 (𝑓, 𝑡) = 𝑃 (𝑐 = ℎ)𝑃ℎ(𝑓, 𝑡) + 𝑃 (𝑐 = 𝑛)𝑃𝑛(𝑓, 𝑡), (1)

where 𝑃ℎ(𝑓, 𝑡)(𝑓,𝑡)∈Z×J1,𝑇 K and 𝑃𝑛(𝑓, 𝑡)(𝑓,𝑡)∈Z×J1,𝑇 K respec-
tively represent the normalized CQTs of the polyphonic and
the noise signals. The models for each component are pre-
sented in the following sections.
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2.1. The notes model

At a given time 𝑡, the spectrum of the polyphonic component,
represented by 𝑃ℎ(𝑓, 𝑡), is decomposed as a weighted sum of
different harmonic notes, each one having its own fundamental
frequency (on a discrete logarithmic scale pitch(𝑖)𝑖∈J0,𝐼−1K)
and spectral envelope. Since the number of notes is unknown,
we consider all possible fundamental frequencies, with possi-
bly zero weights:

𝑃ℎ(𝑓, 𝑡) =
∑︁
𝑖

𝑃ℎ(𝑖, 𝑡)𝑃ℎ(𝑓 |𝑖, 𝑡), (2)

where 𝑖 ∈ J0, 𝐼 − 1K is a new latent variable representing
the note of fundamental frequency pitch(𝑖). 𝑃ℎ(𝑖, 𝑡) and
𝑃ℎ(𝑓 |𝑖, 𝑡) respectively represent the energy and the normal-
ized harmonic spectrum of note 𝑖 at time 𝑡. 𝑃ℎ(𝑖, 𝑡) can thus
be seen as time-frequency note activations.

In order to account for the harmonic nature of 𝑃ℎ(𝑓 |𝑖, 𝑡),
as well as its specific spectral envelope, the same principle as in
[7] is adopted. The spectrum of a harmonic note is decomposed
as a weighted sum of 𝑍 fixed narrow-band harmonic spectral
kernels, denoted 𝑃ℎ(𝑓 |𝑧, 𝑖), sharing the same fundamental
frequency pitch(𝑖) and having their energy concentrated at the
𝑧th harmonic:

𝑃ℎ(𝑓 |𝑖, 𝑡) =
∑︁
𝑧

𝑃ℎ(𝑧|𝑖, 𝑡)𝑃ℎ(𝑓 |𝑧, 𝑖). (3)

The applied weights, included in 𝑃ℎ(𝑧|𝑖, 𝑡), define the spectral
envelope of the current note. Working with the CQT has a main
advantage, since for a harmonic note, a pitch modulation can
be interpreted as a frequency shifting of the partials. Therefore,
for given 𝑖 and 𝑧, 𝑃ℎ(𝑓 |𝑧, 𝑖) can be deduced from a single
template 𝑃ℎ(𝜇|𝑧)𝜇∈J1,𝐹 K as follows:

𝑃ℎ(𝑓 |𝑧, 𝑖) = 𝑃ℎ(𝑓 − 𝑖|𝑧). (4)

Here, 𝑃ℎ(𝜇|𝑧) is also a narrow-band harmonic kernel, having
its energy concentrated on the 𝑧th harmonic. Its fundamental
frequency is pitch(0). Its precise definition can be seen in
the function make_Kernel.m of the online Matlab code [8].
Contrary to [9], the kernels have been designed in order to
have energy only for the frequency bins corresponding to
harmonics. The spectral spreading of the partials of a note
is therefore not taken into account by the kernels but by the
note activations, various joint values of 𝑖 being necessary to
explain a single note. Doing so allows insuring that the model
can fit any spectral spreading of the partials (for instance, a
continuous variation of pitch induces a larger spreading at a
given time).

Finally, the whole polyphonic component model can be
written as:

𝑃ℎ(𝑓, 𝑡) =
∑︁
𝑖,𝑧

𝑃ℎ(𝑖, 𝑡)𝑃ℎ(𝑧|𝑖, 𝑡)𝑃ℎ(𝑓 − 𝑖|𝑧). (5)

One can notice that we end up with a convolutive model,
meaning that variable 𝑓 is defined as the sum of two random
variables 𝜇 and 𝑖. Fig. 1 illustrates this model.

+

CQT of a polyphonic signal

A polyphonic spectrum

*

*

*

Fig. 1. Polyphonic component of the BHAD model. At time
𝑡0, the vector 𝑃ℎ(𝑖, 𝑡0) should have as many peaks as there are
active notes in the signal.

2.2. The noise model

Similarly to [7], the CQT of the noise signal is modeled
as the convolution of a fixed smooth narrow-band win-
dow 𝑃𝑛(𝜇)𝜇∈J1,𝐹 K, and a noise time-frequency distribution
𝑃𝑛(𝑖, 𝑡)(𝑖,𝑡)∈J0,𝐼−1K×J1,𝑇 K:

𝑃𝑛(𝑓, 𝑡) =
∑︁
𝑖

𝑃𝑛(𝑖, 𝑡)𝑃𝑛(𝑓 − 𝑖). (6)

3. PARAMETERS ESTIMATION: EM ALGORITHM

In [7], it is explained how to derive the EM algorithm. This
algorithm defines update rules for the parameters so that the
log-likelihood 𝐿 of the observations increases at every iteration
(it can be proven that 𝐿 =

∑︀
𝑓,𝑡 𝑉𝑓𝑡 ln (𝑃 (𝑓, 𝑡))).

First, in the "expectation step", the posterior distribution of
latent variables 𝑖, 𝑧 and 𝑐 is computed by applying the Bayes’
theorem:

𝑃 (𝑖, 𝑧,𝑐 = ℎ|𝑓, 𝑡) =
𝑃 (𝑐 = ℎ)𝑃ℎ(𝑖, 𝑡)𝑃ℎ(𝑧|𝑖, 𝑡)𝑃ℎ(𝑓 − 𝑖|𝑧)

𝑃 (𝑓, 𝑡)
,

(7)

𝑃 (𝑖,𝑐 = 𝑛|𝑓, 𝑡) =
𝑃 (𝑐 = 𝑛)𝑃𝑛(𝑖, 𝑡)𝑃𝑛(𝑓 − 𝑖)

𝑃 (𝑓, 𝑡)
. (8)

Equations (1), (5) and (6) define 𝑃 (𝑓, 𝑡).
Then, in the "maximization step", the log-likelihood of

observed and latent variables 𝑄Λ is maximized, leading to the
following updates rules:

𝑃 (𝑐 = ℎ) ∝
∑︁
𝑓,𝑡,𝑧,𝑖

𝑉𝑓𝑡𝑃 (𝑖, 𝑧, 𝑐 = ℎ|𝑓, 𝑡), (9)

𝑃ℎ(𝑖, 𝑡) ∝
∑︁
𝑓,𝑧

𝑉𝑓𝑡𝑃 (𝑖, 𝑧, 𝑐 = ℎ|𝑓, 𝑡), (10)
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𝑃ℎ(𝑧|𝑖, 𝑡) ∝
∑︁
𝑓

𝑉𝑓𝑡𝑃 (𝑖, 𝑧, 𝑐 = ℎ|𝑓, 𝑡), (11)

𝑃 (𝑐 = 𝑛) ∝
∑︁
𝑖,𝑓,𝑡

𝑉𝑓𝑡𝑃 (𝑖, 𝑐 = 𝑛|𝑓, 𝑡), (12)

𝑃𝑛(𝑖, 𝑡) ∝
∑︁
𝑓

𝑉𝑓𝑡𝑃 (𝑖, 𝑐 = 𝑛|𝑓, 𝑡). (13)

After initialization of the parameters, the EM algorithm con-
sists in iterating equations (7) and (8), the different update
rules (equations (9) to (13)) and finally the normalization of
all parameters so that the probabilities sum to one.

4. SPARSENESS PRIOR

In practice, running the presented algorithm without any ad-
ditional prior does not give relevant estimations of the param-
eters. Indeed, for one note of pitch 𝑓0 actually present in the
input signal, all notes 𝑖 whose fundamental frequency is a
multiple or a submultiple of 𝑓0 will be activated. Thus, even
if the log-likelihood of the data after convergence is high, the
decomposition might not be informative enough. In order to
overcome this flaw, we add a sparseness prior to the note acti-
vations 𝑃ℎ(𝑖, 𝑡), assuming it is more likely to explain the same
set of data using a fewer number of active notes.

If 𝜃 is the 𝐼 × 𝑇 matrix of coefficients 𝜃𝑖𝑡 = 𝑃ℎ(𝑖, 𝑡), the
prior we put forward is defined as follows:

𝑃𝑟(𝜃) ∝ exp
(︁
−2𝛽

√
𝐼𝑇 ‖𝜃‖1/2

)︁
. (14)

where ‖𝜃‖1/2 =
∑︀

𝑖,𝑡

√
𝜃𝑖𝑡. 𝛽 is a hyperparameter defining

the strength of the prior and the coefficient
√
𝐼𝑇 is such that

the strength is independent of the size of the data. In Ap-
pendix A, it is proven that if 𝛽2 <

∑︀
𝑖,𝑡 𝑤

2
𝑖𝑡/(𝐼𝑇 ), where

𝑤𝑖𝑡 =
∑︀

𝑓,𝑧 𝑉𝑓𝑡𝑃 (𝑖, 𝑧, 𝑐 = ℎ|𝑓, 𝑡), then the update rule (10)
followed by its normalization are replaced by:

𝑃ℎ(𝑖, 𝑡) =
2𝑤2

𝑖𝑡

𝐼𝑇𝛽2 + 2𝜌𝑤𝑖𝑡 + 𝛽
√
𝐼𝑇

√︀
𝐼𝑇𝛽2 + 4𝜌𝑤𝑖,𝑗

,

(15)
𝜌 being the unique positive number such that 𝑃ℎ(𝑖, 𝑡) sums
to one. This number can be found with any root finder algo-
rithm (we used the fzero Matlab function). In practice 𝛽 is
set to a sufficiently low value so that 𝛽2 is always inferior
to

∑︀
𝑖,𝑡 𝑤

2
𝑖𝑡/(𝐼𝑇 ). The effect of using the sparseness prior is

illustrated in Fig. 2.

5. APPLICATION TO SUPERVISED SOURCE
SEPARATION

In this section, it is explained how the BHAD model can be
used to perform supervised source separation. The main idea
is to provide a note selection tool where the user chooses via
a GUI which notes actually present in the input file are to be
separated from the rest of the audio.

Fig. 2. Illustration of the use of the sparseness prior. The
input signal corresponds to an excerpt from Bach’s Prelude
and Fugue in D major BWV 850. The growth of the criterion
over the iterations of the EM algorithm has also been plotted.

5.1. GUI and notes selection

The BHAD model offers a relevant mid-level representation
of audio, since note activations 𝑃ℎ(𝑖, 𝑡) indicate the active
notes with respect to time, like in a "piano-roll" representation.
Using Matlab, a GUI has been developed (available at [8]), as
shown in Fig. 3, where the user can highlight the notes to be
extracted. The GUI consists of the following elements: (1) the
representation of note activations 𝑃ℎ(𝑖, 𝑡), on which the user
can select notes or edit the data (erase and draw functions) if
he notices that the BHAD algorithm gave wrong estimations;
(2) the control panel, where the user can set hyperparameters
for the BHAD algorithm (such as the sparseness strength 𝛽),
run the algorithm, separate the selected notes, reinitialize all
parameters and change the contrast of the representation of the
activations; (3) the toolbar, composed of basic tools in order
to load a new wave file or a previous work, to save the current
work, to explore the image, to select or unselect notes, to listen
to a note whose pitch corresponds to the same pitch than the
selected note, to edit the note activations and finally to listen
to the signal.

5.2. Source model and time-frequency masking

The user, by highlighting the notes he wants to extract with
the "select note" tool, defines a binary mask 𝐵(𝑖, 𝑡) on the
note activations, equal to 1 if a time-frequency bin is selected
and 0 otherwise. 𝐵(𝑖, 𝑡) can be used to perform the separation
by means of time-frequency masking on the input CQT. Two
masks, 𝑀1 and 𝑀2, which respectively correspond to source 1
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Fig. 3. GUI of the note selection tool. The input file is an ex-
cerpt from the jazz standard Summertime composed by George
Gershwin. The highlighted areas correspond to notes selected
by the user.

(the selected notes) and source 2 (the residual), are defined as:

𝑀1(𝑓, 𝑡) =
𝑃 (𝑐 = ℎ)

∑︀
𝑖,𝑧 𝐵1(𝑖, 𝑡)𝑃ℎ(𝑧|𝑖, 𝑡)𝑃ℎ(𝑓 − 𝑖|𝑧)

𝑃 (𝑓, 𝑡)
,

(16)

𝑀2(𝑓, 𝑡) =
1

𝑃 (𝑓, 𝑡)

(︁
𝑃 (𝑐 = 𝑛)𝑃𝑛(𝑓, 𝑡)+ (17)

𝑃 (𝑐 = ℎ)
∑︁
𝑖,𝑧

𝐵2(𝑖, 𝑡)𝑃ℎ(𝑧|𝑖, 𝑡)𝑃ℎ(𝑓 − 𝑖|𝑧)
)︁
,

where 𝐵1(𝑖, 𝑡) and 𝐵2(𝑖, 𝑡) respectively denote 𝐵(𝑖, 𝑡)𝑃ℎ(𝑖, 𝑡)
and (1 −𝐵(𝑖, 𝑡))𝑃ℎ(𝑖, 𝑡). It can be noticed that for all (𝑓, 𝑡),
𝑀1(𝑓, 𝑡) + 𝑀2(𝑓, 𝑡) = 1. The estimated temporal signals of
the two sources, 𝑥̂1 and 𝑥̂2, are then given by applying the
masks on the input CQT 𝑋𝑓𝑡 and calculating the invert CQT1:

𝑥̂1 =CQT−1 (𝑀1(𝑓, 𝑡)𝑋𝑓𝑡) , (18)

𝑥̂2 =CQT−1 (𝑀2(𝑓, 𝑡)𝑋𝑓𝑡) . (19)

6. EVALUATION

Two different evaluations have been made in order to mea-
sure the quality of the presented system. The aim of the first
evaluation is to appreciate the relevance of the BHAD algo-
rithm itself, in order to ensure that it gives accurate estimation
of note activations. Thus, it has been evaluated in a task of
multipitch estimation.

First, the CQT of a temporal signal is calculated from
𝑓 = 27.5Hz to 𝑓 = 7040Hz with 3 frequency bins/semitones
and with a time step of 10 ms. After convergence of the BHAD
algorithm, the pitches are inferred for each time frame from

1The invert CQT we used in our algorithm is freely available at http:
//www.tsi.telecom-paristech.fr/aao/en/2011/06/06/inversible-cqt

Algorithm Precision Recall F-measure Accuracy

[9] 29.3 53.2 35.8 81.7
BHAD-np 30.0 64.2 31.2 76.6

BHAD 47.0 54.5 47.2 85.3

Table 1. Results from QUAERO 2011 framewise multipitch
evaluation task.

the note activations: at a given time 𝑡0, the note 𝑖0 is con-
sidered to be active if 𝑃ℎ(𝑖, 𝑡0) presents a local maximum
in 𝑖0 and if 𝑃ℎ(𝑖0, 𝑡0)dB > max𝑖,𝑡𝑃ℎ(𝑖, 𝑡)dB − 𝐴𝑚𝑖𝑛. Fi-
nally the corresponding fundamental frequency pitch(𝑖0) is
rounded to the closest MIDI pitch. In order to evaluate the
role of the sparseness prior, two versions of the algorithm
have been tested. BHAD-np will refer to the system using
no prior (𝛽 = 0, 𝐴𝑚𝑖𝑛 = 25dB), and BHAD to the system
with the prior (𝛽 = 0.0018, 𝐴𝑚𝑖𝑛 = 30dB). The values of
𝛽 and 𝐴𝑚𝑖𝑛 have been set according to the results obtained
during a training process on a development database. The
test database used for evaluation is a subset of the QUAERO
database2 (6 audio files of various genre, from reggae to rock)
and the MIREX 2007 multi-F0 development dataset3. The
algorithm [9] has also been evaluated. Four classical measures,
Precision, Recall, F-measure and Accuracy, described in [9]
and [10], are reported in Tab. 1. It can be seen that the addition
of the sparseness prior significantly improves the precision of
the results, despite a lower score in terms of recall. In any case,
the BHAD algorithm outperforms the reference algorithm for
every measure.

The second evaluation is dedicated to the user-guided
source separation, where the proposed system was compared
to [4] in a task of main melody (vocal source) extraction.
The database consists of five 15s excerpts from the QUAERO
source separation corpus. For each file and each system, the
main melody pitch line has been localized, selected by means
of the selection tool provided in both GUIs and finally ex-
tracted. The quality of the estimated melody source is then
quantified through the BSSEval toolbox [11], which gives the
following measures: the Signal to Distortion Ratio (SDR), the
Signal to Interference Ratio (SIR) and the Signal to Artifact Ra-
tio (SAR). According to the results reported in Tab. 2, it seems
that our system is slightly less efficient in a task of melody
extraction. However, it can be noticed that it is more generic
since it allows separating any polyphonic source whereas in
[4], only monophonic sources can be extracted.

2The QUAERO (http://www.quaero.org) database will be soon available
at http://www.tsi.telecom-paristech.fr/aao/en/software-and-database/

3http://music-ir.org/mirexwiki
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Method SDR SIR SAR

Proposed 4.0 16.6 4.5
[4] 5.2 16.2 6.0

Table 2. Average SDR, SIR and SAR of the melody estimates
using two systems.

7. CONCLUSION

In this study, we propose a new algorithm which accurately
decomposes the CQT of an audio signal into a meaningful
mid-level representation. Each time frame of the CQT is
decomposed as a sum of harmonic notes, each note being
modeled by means of fixed narrow-band harmonic templates.
The presence of colored noise is also considered, and a new
sparseness prior has been introduced for note activations. The
BHAD algorithm has been evaluated in a task of multiple
pitch estimation, and outperformed another state-of-the art
algorithm. Finally, it has been proven that the BHAD model
could be used for source separation, by offering a GUI where
the user can select the notes he wants to extract. In future work,
the authors plan to include a noise model for the notes, since
for now, only noiseless harmonic instruments can be correctly
being separated. Another outlook would be to automatically
cluster the notes according to their timbre in order to isolate
instruments in an unsupervised way.

A. EM UPDATE RULES WITH SPARSE PRIOR

During the "maximization step" of the EM algorithm, one
wants to maximize the joint log-probability 𝑄Λ of all variables
(Λ denotes the set of all parameters). Using the same notation
as in section 4, it can be proven that

𝑄Λ = 𝑄Λ′ +
∑︁
𝑖,𝑡

𝑤𝑖𝑡 ln (𝜃𝑖𝑡) (20)

where 𝑄Λ′ depends on all parameters other than 𝜃𝑖𝑡 = 𝑃ℎ(𝑖, 𝑡).
With the addition of the sparseness prior, the maximization step
is now replaced by a maximization a posteriori step. It does not
change anything for the other parameters, but the new update
rule for 𝜃𝑖𝑡 is obtained by maximizing 𝑄Λ + ln (𝑃𝑟(𝜃)) with
respect to 𝜃. It amounts to maximizing on Ω = ]0, 1]

𝐼×]0, 1]
𝑇

the following functional under the constraint 𝜙(𝜃) = 1 −∑︀
𝑖,𝑡 𝜃𝑖𝑡 = 0:

𝒮 : Ω −→R

𝜃 ↦−→
∑︁
𝑖,𝑡

𝑤𝑖𝑡 ln(𝜃𝑖𝑡) − 2𝛽
√
𝐼𝑇

∑︁
𝑖,𝑡

√︀
𝜃𝑖𝑡.

(21)

We know that the maximum exists on Ω since 𝑆 is continuous
and upper bounded by 0 and its argument 𝜃 verifies the first

order necessary conditions, proper to local maxima (Lagrange
theorem): since 𝒮 and 𝜙 are both differentiable, there exists a
unique 𝜌 ∈ R such that:

∇𝐿𝜌(𝜃) = 0 (22)

where 𝐿𝜌 is the Lagrangian defined as:

𝐿𝜌 : Ω −→ R
𝜃 ↦−→ 𝒮(𝜃) + 𝜌𝜙(𝜃).

(23)

Equation (22) leads to:

∀(𝑖, 𝑡),
𝑤𝑖𝑡

𝜃𝑖𝑡
− 𝛽

√
𝐼𝑇√︀
𝜃𝑖𝑡

− 𝜌 = 0. (24)

By studying the three cases max𝑖,𝑡

(︁
−𝛽2𝐼𝑇

4𝑤𝑖𝑡

)︁
< 𝜌 < 0, 𝜌 = 0

and 𝜌 > 0, it appears that
∑︀

𝑖,𝑡
𝑤2

𝑖𝑡

𝛽2𝐼𝑇 > 1 if and only if 𝜌 > 0.
In that event,

∀(𝑖, 𝑡), 𝜃𝑖𝑡 =
2𝑤2

𝑖𝑡

𝐼𝑇𝛽2 + 2𝜌𝑤𝑖𝑡 + 𝛽
√
𝐼𝑇

√︀
𝛽2𝐼𝑇 + 4𝜌𝑤𝑖𝑡

,

(25)
𝜌 being the unique value for which

∑︀
𝑖,𝑡 𝜃𝑖𝑡 = 1. This finally

proves eq.(15).
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