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ABSTRACT

ASO [1] is an adaptive embedding scheme that has proved its
efficiency compared to HUGO [2] algorithm. It is based on
the use of a detectability map that is correlated to the security
of the embedding process. The detectability map is calcu-
lated using the Kodovský’s ensemble classifiers [3] as an ora-
cle, which preserves the distribution of the cover image and
of the sender’s database. In this article, we give the techni-
cal points about ASO. We give the details of the detectability
map computation, then we study the security of the commu-
nication phase of ASO through the paradigm of the steganog-
raphy by database. Since the introduced paradigm allows the
sender to choose the most secure stego image(s) during the
transmission of his message, we propose some security met-
rics that can help him to distinguish between secure and in-
secure images. We thus significantly increase the security of
ASO.

Index Terms— Steganography, Detectability map, En-
semble classifiers, Oracle, Steganography by database.

1. INTRODUCTION

Steganography is the art of secret communication. The goal
is to hide a secret message in an unsuspicious object in such
a way that no one can detect it. With the Internet spread, sev-
eral philosophies of designing steganographic methods were
proposed. One of the most used embedding methods for real
digital images is the steganography by minimizing of the em-
bedding impact1.

Let x = (x1, ..., xn) be a cover support composed of n
elements. The goal of steganography by minimizing the em-
bedding impact is to communicate a secret message m =
(m1, ...,mm) by making small perturbations of cover object
x to produce a stego object y = (y1, ..., yn). For this, we
define a distortion function D(x, y) that we minimize under
the constraint of a fixed payload. This distortion function is
generally based on the use of a detectability map ρ ∈ Rn

+

1The principle of minimizing the embedding impact was proposed in
2007 [4]. It is based on the adaptivity of the embedding operation by the
use of a detectability map.

which assigns to each cover element xi with i ∈ {1, ..., n},
a detectability cost ρi ∈ R+ that models the impact on the
security caused by the modification of the ith element.

The HUGO algorithm [2] used during the BOSS2 com-
petition [5] uses a detectability map, which attributes to each
pixel of a cover image a detectability cost ρi ∈ [0, ∞], as
suggested in [6]. The calculation of the detectability cost
is based on the use of high-dimensional features, which are
calculated from the cover image. These features correspond
to the conditional probabilities in each pixel of the filtered
image. The MOD3 algorithm proposed in 2011 [7], extends
the HUGO proposal by defining a parametric detectability
cost ρi ∈ [0,∞], which is parametrized by a high number
of parameters. The ASO4 embedding algorithm that we pro-
posed in [1], improves the concept of the detectability map
introduced by HUGO. It uses a non parametric detectabil-
ity map whereas MOD use a parametric approach. The de-
tectability map ρ = {ρi ∈ [0,∞[}ni=1 is defined by using the
functionalities of the Kodovský’s ensemble classifiers [3] as
an oracle. This preserves not only the cover image distribu-
tion, but also the distribution of the sender’s database. Thus,
ASO introduces a new paradigm in steganography which is
the steganography by database that, furthermore, offers to the
sender the possibility to choose the most secure image(s) dur-
ing the transmission phase.

In this paper, we pursue the study about the adaptive
steganography by oracle [1]. We give the technical points
about the embedding algorithm (ASO), and we discuss about
the security of the ASO’s embedding process thanks to the
steganography by database paradigm. For this, we propose
some new security measures that reflect the security level of
the stego images.

The rest of this paper is organized as follows. In Section
2.1, we recall some notions about the ASO algorithm. In Sec-

2BOSS (Break Our Steganography System) is the first challenge on Ste-
ganalysis. The challenge started the September 9th 2010 and ended the 10th
of January 2011. The goal of the player was to figure out, which images
contain a hidden message and which images do not. The steganographic al-
gorithm was HUGO [2]. http://www.agents.cz/boss/BOSSFinal/.

3MOD: Model Optimized Distortion.
4ASO: Adaptive Steganography by Oracle [1].
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tion 2.2, we give the technical points about the detectability
map construction. In Section 2.3, we discuss the paradigm of
the steganography by database and we propose the security
metrics. We give experimental results in Section 3, and we
conclude in Section 4.

For the sake of simplicity, we denote by x = (x1, ..., xn) ∈
X = {0, ..., 255}n and y = (y1, ..., yn) ∈ Y = {0, ..., 255}n
grayscale cover and stego images with n pixels. The use of
any other digital media is also possible.

2. ADAPTIVE STEGANOGRAPHY BY
ORACLE (ASO)

2.1. General scheme

ASO5 [1] is an adaptive embedding scheme that is based
on the principle of minimizing embedding impact [4, 6]. It
strives to hide a given message m in a cover support x, while
minimizing an ad hoc distortion measure that is correlated
to the security of the embedding process. The embedding is
either simulated [4], or done by using the STC6 approach [6].
These embedding algorithms require to define a detectability
map ρ that model the statistical detectability. In ASO an ora-
cle is used to calculate a detectability map ρ = {ρi ∈ R}ni=1

that assigns a detectability costs ρi to each pixel xi:

ρi = min
(
ρ
(+)
i , ρ

(−)
i

)
, (1)

with ρ
(+)
i (resp. ρ

(−)
i ) the detectability cost of changing the

ith pixel by +1 (resp. −1).

Since the Kodovský’s FLD ensemble classifiers [3] al-
lows to split the features space into cover and stego regions,
ASO [1] uses this separation as an oracle to define the de-
tectability costs ρ(+)

i and ρ
(−)
i :

ρ
(+)
i =

L∑
l=1

ρ
(l)(+)
i , and ρ

(−)
i =

L∑
l=1

ρ
(l)(−)
i , (2)

where ρ
(l)(+)
i (resp. ρ(l)(−)

i ) is the detectability cost provided
by the lth classifier, and L is the number of the FLD classi-
fiers.

For each FLD classifier Fl, with l ∈ {1, ..L}, that per-
formed its learning on a subspace of dred dimension, the de-
tectability cost ρ(l)(+)

i is defined as:

ρ
(l)(+)
i =

w(l).
(
fx∼xi

(l)(+) − fx
(l)
)

s(l)
, (3)

and the detectability cost ρ(l)(−)
i by:

ρ
(l)(−)
i =

w(l).
(
fx∼xi

(l)(−) − fx
(l)
)

s(l)
, (4)

5For more details about the ASO embedding algorithm, please refer to [1],
available on: http://www.lirmm.fr/∼kouider/Publications.html.

6STC: Syndrome Trellis Codes.

with w(l) the vector orthogonal to the hyperplane separating
the two classes calculated by the classifier Fl, fx(l) the feature
vector that we wish to classify by the classifier Fl, fx∼xi

(l)(+)

(resp. fx∼xi
(l)(−)) the feature vector obtained after the modi-

fication of the ith pixel by +1 (resp. −1), and s(l) ∈ R+ the
normalization factor of the lth classifier Fl (see [1]).

By using the functionalities of the Kodovský’s ensemble
classifiers [3] and the acquired knowledge of the learning
phase, ASO [1] manages to preserve not only the distribution
model of the current cover image, but also the distribution
model of the sender’s database. It thus improves the security
of the embedding process.
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Fig. 1. General scheme of the Adaptive Steganography by Oracle
(ASO) [1].

As shown in Figure 1, the embedding process of ASO [1]
consists of two steps. The first step (labeled I in Figure 1)
aims to produce a first draft of ASO’s stego images. In this
step, the computation of the detectability map ρ (Eq. 1) is per-
formed by using the Kodovský’s ensemble classifiers [3] that
is trained to distinguish between cover and the stego images
embedded with HUGO [2]. The second step (labeled II in Fig-
ure 1) is an iterative step that aims to improve the security of
ASO. The detectability map is calculated using a Kodovský’s
ensemble classifiers [3] that is trained to distinguish between
the cover and the ASO’s stego images from the previous iter-
ation.

At the end of the embedding process, ASO allows to ob-
tain a set of a stego images, rather than only one stego image.

2.2. Technical points about detectability map computation

The computation of a feature vector fx ∈ Rd, with vector
dimension d ≫ dred, is CPU consuming. In our case fx
is obtained by first applying many high-pass filter and then
count the m-uplets co-occurrences in the different high-pass
images. In the ASO algorithm, the computation of the de-
tectability map ρ requires to compute the values ρ

(l)(+)
i and

ρ
(l)(−)
i for each pixel xi, which involves the calculation of the
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Fig. 2. Computation of the feature variations on a square window
area of r = 9 width. The residual 1-Dimension filter used to com-
pute the features has a size (s = 3).

two new feature vectors fx∼xi
(l)(+) and fx∼xi

(l)(−) resulting
from the modification +1 or −1 of the ith pixel (see Eq. 3
and Eq. 4). Since the vector w(l) and the normalisation factor
s(l) are calculated during the learning phase of the classifier,
we do not need to calculate them again during the compu-
tation of ρ(l)(+) and ρ(l)(−). The computational complexity
for the construction of the detectability map ρ comes mainly
from the computation of fx∼xi

(l)(+) and fx∼xi
(l)(−). To ad-

dress this problem, instead of calculating separately the fea-
ture vectors fx∼xi

(l)(+) and fx∼xi
(l)(−), we propose to only

calculate, on a reduced area, the variation (fx∼xi
(l)(+)−fx

(l))

and (fx∼xi
(l)(−)−fx

(l)) introduced by the modification +1 or
−1 of each pixel xi.

We thus define for each pixel xi a square window area
of r width centred on xi. This window area gives the set of
pixels responsible of the changes between the vectors fx

(l)

and fx∼xi
(l)(+) (resp. fx∼xi

(l)(−) and fx
(l)). The pixels that

are outside of this area do not introduce change between fx
(l)

and fx∼xi
(l)(+) (resp. fx∼xi

(l)(−) and fx
(l)). We thus do not

consider those pixels during the computation of the feature
variations.

The width r of the square window area depends on the
size s of the high-pass 1-Dimension filter, and the order m of
the co-occurrence matrice used to calculate the feature vec-
tors [8]. The size of the window area, on which we calculate
the variations (fx∼xi

(l)(+) − fx
(l)) and (fx∼xi

(l)(−) − fx
(l)),

must be large enough to cover all possible modifications in-
volved by changing the pixel xi. Knowing that changing
a given pixel xi by +1 or −1 may affect (non pathologi-
cal case) the m-uplets (xi+a, xi+(a+1), ..., xi+(a+m)), with
a ∈ {−⌊ r

2⌋, ..., ⌊
r
2⌋ − m}, in all directions, choosing r =

s+2(m− 1) guarantees a valid result for the computation of
the feature variations (fx∼xi

(l)(+) − fx
(l)) and (fx∼xi

(l)(−) −
fx

(l)).

To take an example, for a residual 1-Dimension filter with
s = 3 size and m = 4 (Figure 2), the involved variations
(fx∼xi

(l)(+) − fx
(l)) and (fx∼xi

(l)(−) − fx
(l)) are calculated

on a square window area of width r = 9.
Our implementation of ASO, for d = 5330, L = 30,

dred = 250, and N = 10000 images of 512 × 512, using

the parallel OpenMP library on an architecture of 8 proces-
sors Quad-Core AMD Opeteron(tm) Processor 8384, at 2.69
GHz, took less than one day and half. Knowing that on a
monoprocessor, without the trick of the square window (Eq. 3
and Eq. 4), the calculation of one feature vector fx took about
0.013s, the computation time of the detectability map ρ of the
10000 images would take 0.013s×2×512×512×10000 =
68157440s (more than two years).

2.3. Paradigm of the steganography by database
As mentioned in Section 2.1, ASO introduces the new
”steganography by database” paradigm. The embedding
process of ASO takes into account not only the model dis-
tribution of the current cover image, but also the distribution
of the sender’s database, thus improving the security of the
embedding process. Moreover, it allows to obtain a set of
stego images instead of just one stego image, which offers to
the sender the opportunity to choose the most secure image(s)
during the transmission of his secret message.

Choosing the most reliable image(s) during the transmis-
sion phase can improve the security of ASO. In order to select
the less detectable stego image(s), we compute for each stego
image a score value that reflects its security level. One pos-
sible powerful method that offers ASO consists to compute
for each stego image the number of FLD classifiers that have
classified it as cover instead of stego, from the Kodovský’s
ensemble classifiers [3]. We thus define the security score as:

SFLD
f : Rd → {0, ..., L}

x → SFLD
f (x),

where: SFLD
f (x) = L−

L∑
l=1

Fl(fx), (5)

with Fl(fx) the decision of the classifier Fl (1 for stego and 0
for cover), and fx the feature vector of the stego image x. The
higher the score SFLD

f (x) is, the greater is the security of the
stego image. Note that with that measure, we obtain several
stego images with the same score.

For more finer granularity of the score value, we may use
the sparsity measures that are generally used with the One
Class Neighbor Machine (OC-NM) steganalyzer [9, 10].

Let us assume that we have K cover images from which
we compute K d-dimensional features. By taking the set of
cover images as a training base, the OC-NM computes for
each samples x a sparsity measure Soc

f (x) that characterizes
the closeness of x to the cover images. The OC-NM stegana-
lyzer strives to identify the best threshold γ so that all samples
x with Soc

f (x) > γ are classified as stego.

Several types of sparsity measures are proposed in the
original publication on OC-NM [9]. One of the most used
measure that can be adopted as a security score, is the so-
called Hilbert kernel density estimator:

Soc
f : Rd → R

x → Soc
f (x),
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where:

Soc
f (x) = log

(
1∑K

k=1 1/
(
∥ fx − fk ∥hd2

)) , (6)

with fx the feature vector of the stego image x, fk the feature
vector of the kth cover image of the training set, ∥ . ∥2 the L2

norm, d the feature vectors dimension, and h a parameter of
smoothness.

Intuitively, since the sparsity measures reflect the close-
ness of a given image to the covers, using these measures as
a security score allows us to evaluate the detectability of the
used stego image(s). The smaller is the sparsity Soc

f (x) of a
given stego image, the greater is its security.

3. EXPERIMENTAL RESULTS

Our experiments were conducted using the BossBase v1.00
cover database7 containing 10000 512× 512 grayscale cover
images in the pgm format, and the same 10000 images em-
bedded with ASO8 for each payload from 0.1 bpp to 0.5 bpp.

Each image is represented by a feature vector of d = 5330
MINMAX features. The set of features comes from the 1458
dimensional MINMAX vector with the truncation threshold
T = 4, and the 3872 dimensional SUM3 vector from the
HOLMES features [8].

To evaluate the necessity and the importance of the intro-
duced paradigm of the steganography by database, we have
built for each payload α from 0.1 bpp to 0.5 bpp two testing
databases of 500 ASO’s stego images. The base B(α)

1 con-
sists of 500 ASO’s stego images that have been randomly se-
lected from the BossBase v1.00 ASO’s stego images. The
base B(α)

2 is composed of the most secure 500 ASO’s stego
images selected from the BossBase v1.00 ASO’s stego im-
ages using the security measure SFLD

f (see Eq. 5). Once
calculated, for each payload, the two testing databases are
then steganalyzed using the One-Class Support Vector Ma-
chine (OC-SVM) of LIBSVM9. The OC-SVM was trained on
the BossBase v1.00 cover database using the Gaussian ker-
nel k(x,y) = exp(−γ∥x − y∥2) with γ = 0.181526 and
ν = 0.01 which is the desired false positive rate. The training
data were scaled before, so that all features were in the range
[−1,+1] (the scaling parameters were derived from cover im-
ages only).

By using the OC-SVM for the steganalysis of the two
testing databases (B(α)

1 and B(α)
2 ) for each relative payload

α from 0.1 bpp to 0.5 bpp, we seek to test if the stego images
that have been selected using the security measure criterion

7BossBase v1.00: A database of 10000 images available on
http://agents.cz/boss/BOSSFinal/.

8The embedding process of ASO was done using L = 30 classifiers,
d = 5330, and dred = 250 [1].

9LIBSVM: A Library for Support Vector Machines, available on
http://www.csie.ntu.edu.tw/ cjlin/libsvm/.

(Eq. 5 and Eq. 6) are more secure than those selected ran-
domly by the sender. In other words, we want to prove the
importance of choosing the most reliable image(s) during the
secret communication phase (i.e. prove the additional security
feature of the steganography by database paradigm).
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Fig. 3. Detection Recall (R) of B(α)
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2 for five relative pay-
loads.

From the results shown in Figure 3, for the five rela-
tive payloads from 0.1 bpp to 0.5 bpp the security of the
stego database B(α)

2 built using the security measure criterion
SFLD
f , is better than the security of the randomly selected

stego database B(α)
1 . For all relative payloads the detection

recall10 R of the OC-SVM steganalyzer on B(α)
2 is lower than

that on B(α)
1 . For instance, for α = 0.5 bpp, the detection

recall R on B(α)
1 is 78%, whereas it is only 56% on B(α)

2 .
Similarly, the detection recall R on B(α)

2 at 0.4 bpp is less
than that on B(α)

1 ; 55% compared to 66%. In brief , the
detection recall R on B(α)

2 for all relative payloads is close
to 50-55%. The OC-SVM steganalyzer classifies incorrectly
one out of two times a given stego image as cover image. In
other words, on B(α)

2 , the OC-SVM has a random behaviour,
since it can not distinguish between the cover and stego im-
ages. This confirms that the stego database B(α)

2 is more
secure than the stego base B(α)

1

Note that the detection recall R of B(α)
2 at 0.1 bpp is

higher than that at 0.2 bpp. It is 53.6% at 0.1 bpp, whereas
it is 50.2% at 0.2 bpp. Indeed, for payloads under 0.2 bpp,
the ASO embedding algorithm does not perform as well as
at higher payloads, since the oracle used for computing the
detectability map (Section 2.1) can not manage to distinguish
between secure and insecure areas [1].

The obtained results show that the set B(α)
2 of the stego

images selected using the security measure SFLD
f are more

secure than those of B(α)
1 that have been randomly selected.

10The detection recall R =
number of stego images correctly classified

total number of stego images .
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Fig. 4. Some exemples of the selected stego images using the security measure SFLD
f criterion (α = 0.5 bpp, and L = 30).

By using a simple security metrics, such as SFLD
f , we obtain

a strong security. The used steganalyzer can not distinguish
between cover and stego images. This confirms the relevance
of choosing the most reliable image(s) during the transmis-
sion phase of the secret message. Moreover, we believe that
using a more finer security measure such as Soc

f (Eq. 6) may
improve even more the security of the message communica-
tion11.

Some examples of the stego images that have been se-
lected using the security measure SFLD

f criterion are given
in Figure 4. As we can see, the selected stego images that
have been judged as the most secure images correspond to
the noisy and textured images.

4. CONCLUSION

In this paper, we present the technical points about the adap-
tive steganography by oracle (ASO). First, we discuss about
the detectability map computation of ASO that reduce sig-
nificantly its computational complexity. Then, we study the
security of ASO thanks to the paradigm of the steganography
by database. Since our embedding ASO algorithm allows to
obtain a set of stego images instead of just one stego image,
we offer to the sender the opportunity to choose the most un-
detectable stego image(s) during the transmission of his se-
cret message. To do this, we propose some security metrics
that help him to select the most reliable stego image(s). Ex-
perimental results show that using a simple security metric,
such as SFLD

f (Eq. 5), for choosing the most secure stego
image(s), improves significantly the security of the commu-
nication phase of ASO.
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