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ABSTRACT

In this paper, we address the problem of joint diagonalization
of hermitian complex matrix sets, which arises in many signal
processing problems (telecommunications, radioastronomy,
biology). We present different gradient based algorithms
using an optimal step size multiplicative update. Computer
simulations are provided to illustrate the comparative behav-
ior of those algorithms together with an application to source
separation.

Index Terms— Joint Diagonalization, Independant Com-
ponent Analysis, Source Separation

1. INTRODUCTION

Approximate joint diagonalization of matrix sets is an im-
portant tool in Blind Source Separation (BSS) or Indepen-
dant Component Analysis (ICA). It has been used, to name
a few, in Joint Approximate Diagonalization of Eigenmatri-
ces (JADE) algorithm for fourth-order cumulants [1], gener-
alized to any order of cumulants in [2] and in Second-Order
Blind Identification (SOBI) [3]. In the above approaches,
only the case of decompositions under the constraint of a
unitary joint diagonalizer, was considered. Other methods
were designed in the non-unitary case, as e.g. Alternating
Columns-Diagonal Centers (ACDC) in [4], Diagonalization
Of Matrices Using a Natural Gradient (DOMUNG) in [5], or
others as in [6, 7, 8, 9, 10]. A comparative study of some of
these algorithms has been performed in [11].

For the approximate joint diagonalization problem of her-
mitian complex matrices, we consider gradient based algo-
rithms for their simplicity and ability for real time implemen-
tation. Our main goal consists in the derivation of algorithms
based on different approximations of the considered criterion
before the gradient derivation. All in one, although existing
algorithms are encountered, new ones are enlightened. Be-
sides, all algorithms are based on the derivation of an optimal
step size, see e.g. [12, 5, 13, 14] which also depends on the
chosen approximate criterion.
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We are particularly interested in gradient algorithms be-
cause of their simplicity and their capability to be easily mod-
ified for tracking.

The paper is organized as follows. First, the joint diago-
nalization problem associated to the classical cost function is
reminded. Then the overall iterative procedure is detailed and
the derivations leading to different levels of approximate cri-
teria are explained. Finally we derive the associated optimal
step size and computer simulations are provided to illustrate
the respective performances of the different proposed algo-
rithms.

2. JOINT MATRIX DIAGONALIZATION

2.1. Problem Statement

The problem is stated as follows. A set of N complex square
matrices M; is considered. These matrices all admit the fol-
lowing decomposition

M, = AD;AY i=1,...,N (1)
where A € CNo*Ns is the mixing matrix, D; € RVs*Ns are
diagonal matrices for all 4 and (-)¥ stands for the transpose
conjugate operator. The joint diagonalization problem mainly
consists in estimating the mixing matrix A, which is assumed
to be full-column rank, or its pseudo inverse denoted by B =
AT where (-)T is the pseudo-inverse operator in the Moore-
Penrose sense.

2.2. Cost Function

Two classical cost functions can be used. The first one corre-
sponds to the so-called subspace fitting criterion which allows
to directly estimate matrix A in (1) and the second one is a
quadratic measure of the diagonality of a matrix defined as

N
J (B) = ||ZDiag {BM;B" } || )
=1



where || - || is the Frobenius norm and ZDiag {-} sets to zero
the diagonal terms of the matrix argument. We consider the
criterion in (2) for the direct estimation of matrix B and we
now consider iterative gradient algorithms for the estimation.

2.3. Iterative scheme

The considered iterative scheme was already used in [5]. It is
based on two updating stages. The first stage is concerned by
the searched matrix and is drawn according to the following
multiplicative update

B = (1+z™)BM 3)

where T is the identity matrix and Z(") € CV*V will be con-
strained to be a zero diagonal matrix.

The second stage is concerned by the matrices diagonal-
ization. At each iteration, the initial matrices set is updated
according to

Mgn-l—l) _ B(n+1)MiB(”+1)H “4)

By using (3) in (4), one directly has
M§"+1) = (I + Z(”)) B(")MiB(”)H (I + Z(n))H
(n) "
= (1+z™) M (1+2) 5

Hence the criterion in (2) based on (4) can be seen as only de-
pending on the zero diagonal matrix Z(™ when (5) is directly
considered. This is written as

N
7(z)=Y |zDiag {1+2)M: 1+2)"}|* ©

where we drop the iterative index n for simplicity. We will
do this in the following each time it appears as not strictly
necessary.

In a classical gradient based approach, the matrix Z can be
derived according to Z = —uVZ (Z) where p is a small pos-
itive step size and the complex gradient is given by VZ (Z) =
0 (Z) /OZ* where (-)* is the complex conjugate operator.

However, it was shown in [5] that the matrix Z can be
constrained to be zero diagonal. Here we propose to consider
the same constraint written as

Z = —;ZDiag {VI (Z)} = uF )

thus leading to an approximate gradient algorithm. The ex-
plicit derivation of the gradient VZ (Z) can be easily deduced
from results established in [5].

But now in order to reduce the computational cost, we are
going to consider different approximations of the criterion.
The validation of these approximations will be verified thanks
to computer simulations in section 3.
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2.4. Approximate gradient derivations

Using the above gradient approximation, the norm of the ma-
trix Z clearly decreases with the iterations. Hence we suppose
that | Z]| < 1, near a stationary point of the algorithm, in such
a way that the matrix product in (6) can be approximated at
first order by

I+Z)M; (I+2)" ~M,; +ZM,; + M;Z"  (8)

leading to the first approximate criterion 7y (Z) ~ Z(Z)
given by

N
7, (Z) = Z |ZDiag {M; + ZM, + Mz‘ZH} ? ©

i=1
Now let us consider that matrix M; = P; + Q; where
P, =Diag{M,;} and Q; = ZDiag{M,} (10)

where Diag {-} stands for the diagonal matrix built from the
diagonal of the matrix argument. Since the matrices IM; are
updated in such a way that they tend to be diagonal, then
we also suppose that ||Q;|| < 1, near a separating point,
Vi. Thus, using this decomposition into the right term of (8),
leads to

M, + ZM,; + M;Z" ~ P, + Q, + ZP; + P,Z" (11)
This leads to another approximate criterion Z» (Z) ~ Z (Z)
given by

N
T,(Z) =) |ZDiag {Qi + ZP; + P,Z" } > (12)

i=1
Notice that since only the non diagonal terms are considered
into the criterion, the matrix P; in (11) is useless.

At this stage, the two above approximations Z; (Z) and
75 (Z) can be written thanks to a unified formulation as

N
J(Z) =) ||ZDiag {R; + ZS; + S;Z"} ||*  (13)
i=1
where R; = S; = M, when (9) is considered and R; = Q;
and S; = P; when (12) is considered.
Now by using [|[ZDiag{-}|> = tr{(-)¥ZDiag{-}},
where tr {-} is the trace of the matrix in argument, we have

N
7(2) =3 t{(Ri+28;+8,2")"
=1
ZDiag {R; + ZS; + S,Z2" } } (14)

Considering once again that |Z|| < 1, we have the following
approximation J, (Z) of J (Z)

N
Jo(Z)=Y { (R; + ZS; + S,2")" ZDiag {R;}
=1

+ R ZDiag {R; + ZS, + S;Z"}} (15)



Finally, the derivation of the gradient using this last approxi-
mation is very easy, and is given by

N
VI.(Z) =Y {Qis! +Ql's;} (16)
i=1
When considering S; = M, in the above expression, the over-

all algorithm corresponds to the DOMUNG algorithm pro-
posed in [5] in the real case.

2.5. Optimal step size

In practice, the algorithm performances depend on the choice
of the parameter p in (7). However this parameter can be
derived in an optimal way by searching, at each iteration, its
value minimizing the considered criterion.

Hence using (7) in the non approximate criterion (6) leads
to the following fourth order polynomial in p

4 N
I(F) =) p') aly(F) (17
=0 =1

where the coefficients a! (F) are given by
ajs (F) = tr {M;'Q;}
ajs (F) =tr{O0{,Q; + M/ ZDiag {0} }
ai 3 (F) = tr {M} ZDiag {O2,} + 05, Q;
+ Of,ZDiag {01,}}

a}s (F) = tr {O{,ZDiag {02} + 0% ZDiag {01 ;} }
aj 3 (F) =tr {0}, ZDiag {0y} } (18)
with

0., =FM, + M;F?  0,; = FM;F# (19)

We can also propose the use of an approximate criterion.
Thus, using (7) in the approximate criterion (13) leads to the
following second order polynomial in p

2 N
JE)=> u> di, (F) (20)
=0 =1

where the coefficients b! (F) are given by

a), (F) =tr {RZDiag {R;} }

aj, (F) = tr {04, ZDiag {R;} + R/ ZDiag {03} }
ail (F) = tr {0}, ZDiag {03} } 1)
with

O3, = FS; + S;F" (22)

Derivating (17) (respectively (20)) w.r.t. p leads to a third
(respectively first) degree polynomial. Then, the root of this
polynomial minimizing (17) or (20) yields the used optimal
step size p. Notice that in the case of a polynomial of degree
one, the root is clearly directly calculated.
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2.6. Proposed algorithms

All the proposed algorithms are based on the approximate
gradient given in (16). They depend on whether matrices
S; = M, or S; = Py, for all 4, and whether the step size
is derived from the original criterion in (6) or from the ap-
proximate criterion in (13). When S; = M, and the step size
is derived from (6), the algorithm is called CDOMUNG since
it directly corresponds to the DOMUNG algorithm proposed
in [5], but in the complex case. When S; = P; and the step
size is derived from (6), the algorithm is called AJDUAG for
Approximate Joint Diagonalization using Approximate Gra-
dient. In the two above cases for S;, when the step size is de-
rived from (13), the two algorithms are called CDOMUNG-
OS and AJDUAG-OS. The last three algorithms can be con-
sidered as novel.

3. SIMULATIONS

In this section, we compare the relative performances of the
four above algorithms thanks to computer simulations. Only
the square case (N, = Nj) is considered and the used Perfor-
mance Index [15, 16] is defined according to

z

1 - Gl
Q)= ——— 5] -1
(G) Ng(Ns; —1) = \= mlax|Gl 1
N, [ N,
! ~ [~ Gl
SR — A | 23
Ny(Ns—1) & Z: max |G ;| 23)
j=1 i=1 »J

where G = BA is the so-called global matrix. In all the
charts, a mean index over 100 Monte Carlo trials is presented.

3.1. Joint Diagonalization

We first consider the direct joint diagonalization problem
where matrices M; are directly built from the model given in
(1) where all complex components (the real and the imaginary
parts independently) of matrix A are derived from a uniform
distribution onto [—2.5,2.5] and where all components of all
real diagonal matrices D, are derived from a uniform distri-
bution onto [—1, 1]. The number of matrices M; is fixed to
N =10and N, = 3.

We also consider the case of additive IN; noise matrices
onto matrices IM;. The complex components (the real and the
imaginary parts independently) of the noise matrices IN; are
derived from a zero mean normal distribution. In this case,
we define a Signal over Noise Ratio (SNR) as

2
SNRyp = 10log;, (;) (24)
b

where o2 is the power of each component of the matrices M;
and o7 is the power of each component of the matrices N;.
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Fig. 1. Convergence speed in the noiseless case

The initial guess is the same for all the algorithms: Z(®) = 0
and B =1

Fig.1 illustrates the mean convergence speed of the per-
formance index in the noiseless case. One can remark that
algorithm AJDuAG — OS has the best convergence speed.
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Fig. 2. Convergence speed in the noisy case, SNR = 20dB

Fig.2 illustrates the mean convergence speed of the per-
formance index in the noisy case where the SNR is equal
to 20dB. In this case, one can remark that the AJDuAG al-
gorithm has the best convergence speed although not asso-
ciated with the best performances after convergence. After
convergence, the AJDuAG — OS algorithm has the best per-
formances.

Fig.3 illustrates the performances (after convergence) of
each algorithm with respect to the SNR. One can see that al-
gorithm AJDuAG — OS has globally the best performances.
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Fig. 3. Performance Index vs. SNR

3.2. Source Separation

We now consider an application to the source separation prob-
lem. We suppose that an observation x vector is built as

x=As+n=y+n (25)

where s is the so-called source vector, y stands for the noise-
less observations and n is a gaussian noise vector. We con-
sider fourth order cumulant statistics of the observations de-
fined by C#*4 = Cum {x,, 2}, x,, v/} where Cum{-} de-
notes the cumulant. We now simply build a set of matrices as
(M(c, d))%b = C%bed and it is well known that the matri-

ces A~'M(c,d)A~H are diagonal for all ¢ and d. For simu-
lations, we consider the square case where we have 3 sources
and 3 observations, hence 9 matrices for the set to be joint
diagonalized. The matrix A is fixed as in the above section.
The source signals are complex and their real and imaginary
parts follow a uniform distribution onto [—1, 1]. The number
of data is fixed to 2'6. The SNR is defined in directly using
the ratio of the power of the source signals and the power of
the noises.

Fig.4 illustrates the mean convergence speed of the per-
formance index in the noisy case when the SNR is equal to
20dB. In this particular application, one can also remark that
the AJDuAG — OS algorithm has the best convergence speed
and that all algorithms nearly have the same performances af-
ter convergence.

Finally, Fig.5 illustrates the performances (after conver-
gence) of each algorithm with respect to the SNR. Nearly all
algorithms have the same behavior.

4. CONCLUSIONS

In this paper, we present new variations of gradient like al-
gorithms for the joint diagonalization problem of a hermitian
matrix set. These variations are based on different levels of
approximations that can be fixed for the considered criterion.
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Fig. 5. Performance Index vs. SNR

Computer simulations illustrate that a gain of convergence
speed is clearly obtained when the highest level of approxima-
tion is used. The application to the source separation problem
illustrates the same fact.
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