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ABSTRACT 
 
Hearing impaired (HI) people struggle more than normal 
hearing (NH) listeners to understand speech in noisy 
environment. Previous evaluations of noise reduction 
algorithms on HI listeners have mainly concentrated on few 
algorithms like spectral subtraction or Wiener filtering. In 
this paper, a sparse coding shrinkage (SCS) noise reduction 
algorithm is proposed to compensate for some of the 
auditory deficits. The noise reduction performance by the 
SCS algorithm is compared with a Wiener filtering (CS-WF) 
approach, where the a priori signal-to-noise-ratio is 
estimated by the cepstral smoothing method. Speech 
recognition tests were performed to assess subjective 
intelligibility of SCS, CS-WF and noisy speech in babble 
noise and speech-shaped noise. Results show that both noise 
reduction algorithms have more potential to improve speech 
intelligibility in HI listeners than NH listeners; SCS 
provides more benefits than CS-WF for HI listeners 
especially in speech shaped noise. 
 

Index Terms — sparse coding shrinkage, speech 
intelligibility, hearing impaired 
 

1. INTRODUCTION 
 
One of the most frequent complaints by hearing aid users is 
that hearing aids do not help to understand language in 
noisy environments. Hearing impaired (HI) listeners 
typically require a speech-to-noise ratio that is 3-6 dB 
higher than that of normal-hearing (NH) people to achieve 
the same level of speech intelligibility [1, 2]. To give HI 
listeners the same ability will require the development of 
more reliable and more efficient noise reduction algorithms 
in hearing aids. 

Previous evaluations of noise reduction strategies in 
hearing aids mainly focused on spectral subtraction [2-5] or 
Wiener filtering algorithms [3]. However, most noise 
reduction algorithms were originally developed to improve 
speech perception for normal hearing subjects and were 
later adopted for hearing aid users. Because of hearing loss 
factors discussed below, algorithms that are optimal for NH 

listeners might not be optimal for HI listeners. Hearing loss 
factors include threshold elevation, loudness recruitment, 
reduced frequency selectivity and reduced temporal 
resolution [6, 7]. Automatic gain control (AGC) [8] 
compensates for threshold elevation and loudness 
recruitment, but there are currently no appropriate solutions 
to compensate for reduced frequency selectivity and 
reduced temporal resolution, which induces severe 
disruption of speech perception in noise.  

A possible solution to the problem is to preserve less 
but key speech information while reducing the overall noise. 
This way, essential speech information is still present after 
the noise reduction, even factoring the reduced frequency 
selectivity and temporal resolution in HA users.  

Here we propose a noise reduction strategy based on 
the principle of sparse coding shrinkage (SCS). It assumes a 
super-Gaussian (sparse) distribution [9] of the principal 
components in clean speech and SCS is performed in the 
principal components. SCS was first developed for image 
denoising [10] and has later been applied for speech 
enhancement [11-17]. Sparse coding has shown significant 
improvement in cochlear implant users [15] and this implies 
potential benefits of SCS in hearing aid users. It is also 
assumed that the principal components of the speech are 
super-Gaussian but difficult to calculate [18]. The shrinkage 
function in our SCS is therefore simplified by an 
approximation method.  

Results of the noise reduction were evaluated by an 
adaptive speech recognition test with NH and HI listeners. 
Furthermore, SCS is compared with a Wiener filtering 
algorithm [19-21], as well as noisy speech in babble noise 
and speech shaped noise.  

 
2. SPARSE CODING SHRINKAGE IN SPEECH 

 
2.1. Implementation 
 
Figure 1 shows the principle of calculating the sparse 
coding shrinkage in noisy speech. The noisy speech is 
transformed into principal components where clean signals 
are sparsely distributed and noise has Gaussian distribution.  
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Figure 1 Flowchart of sparse coding shrinkage in noisy 

speech. 
 

The shrinkage function g(·) is applied to suppress noisy 
components. After that an inverse transformation 
reconstructs the estimated clean speech signals. 

The noisy speech signal z is assumed to be produced by 
corrupting the original speech sequence x with Gaussian 
noise: 
 z x n   (1) 

The noisy speech matrix is constructed by reshaping z 
as overlapping frames (50% overlap)  
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 (2)    

where l denotes the number of frames and m (m=64) is the 
4-ms window in each column at a sampling rate of 16 kHz.  
After reshaping, the original noisy speech can be written as  

  Z X N  (3) 

The estimated clean speech covariance matrix and the 
estimated noise covariance matrix are denoted 

as ˆ
xR and ˆ

nR respectively (estimation details will be 

described in Section 2.3).  
The transformation from noisy speech to principal 

components is realized by simultaneous diagonalization of 
the clean speech and noise covariance matrices [22] so that 

 
ˆ

ˆ





T
x x

T
n

W R W Λ

W R W I
 (4) 

Where xΛ and W are the eigenvalue matrix and eigenvector 

matrix respectively of the following matrix: 

 1ˆ ˆ n xΣ R R  (5) 

When n is colored noise, pre-whitening is realized together 
with extraction of eigenvector matrix in Equation (5).  
     T T TY W Z W X W N S V  (6) 

where [ ; ; ]   1 2 nY y y y , [ ; ; ]  1 2 nS s s s , 

[ ; ; ]   1 2 nV v v v  

The clean speech components is are in super-Gaussian 

distribution and noise components iv are in Gaussian 

distribution. Therefore the sparse coding shrinkage function 
can be applied to each component iy  to estimate the clean 

components is :   

 ˆ g( )i is y  (7)  

ˆ ˆ ˆ ˆ[ ; ; ]    1 2 nS s s s is the estimated clean speech matrix in the 

space of principal components. Inverse transformation of the 
estimated clean matrix yields  

 ˆˆ  TX W S  (8) 

Finally, the enhanced speech x̂  is reconstructed by 

reshaping X̂  back into vector form by overlap and add 
method [23].  
 
2.2 Super-Gaussian distribution and shrinkage function 
 

The distribution of principal components of speech is 
assumed to be a linear combination of Gaussian and 
Laplacian distributions: 

  2( ) exp 2s i i if s C as b s    (9) 

where C is an irrelevant scaling constant, different values of 
a and b represent different degrees of super-Gaussianity.  

Through maximum-a-posterior (MAP) derivation [9], 
the shrinkage function corresponding to the distribution of 
(9) is derived as: 
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where (0)sf is the value of the density function of is at zero, 

and 2 is the noise variance in the principal components. 

This shrinkage function is interpolated between the 
shrinkage function of the Gaussian density and the 
shrinkage function of the Laplacian density. Specifically, 
when the distribution of is is Laplacian, a is 0 and b is 

estimated as  22 iE s ; when the distribution of is is 

Gaussian, b is 0 and a is estimated as  21 iE s . Therefore it 

is reasonable to constrain the values of a and b in the 

intervals of  20,1 iE s   and  20, 2 iE s 
  

.  

To simplify the estimation of a and b in Equation (10), 
we assume that 

 2
1 ia E s ,  2

2 2 ib E s  .  
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Here 1,2 are coefficients to be adjusted experimentally. In 

our test, 1 is set to 1, 2 is set to 0.3,    2 2 2
i iE s E y   . 

The choice of moderately super Gaussian distributions 
is justified by the criterion in [9] that when 

 2 (0) 1/ 2i sE s f  , the distribution model can be 

assumed to be described as equation (9).  
 
2.3. Noise estimation and pre-whitening 
 
When the background noise is colored, the noise covariance 

matrix needs to be estimated as ˆ
nR in Equation (5). Here, a 

noise estimation method proposed in [21] is adopted to track 
non-stationary noise. This method estimates the noise power 
spectral density (NPSD) based on a speech presence 
probability (SPP), where the a priori SNR is a fixed value in 
estimating the SPP. The noise covariance matrix is 
estimated by inverse Fourier transform of noise power 
spectral density according to the Wiener-Khinchin Formula 
[23].  
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Where ( )jw
nn e is noise power spectral density and 

[ ]nn m is the noise autocorrelation coefficients which can be 

derived through inverse Fourier transform of NPSD. When 
the mean of the noise is zero, noise auto-covariance 
coefficients equal noise auto-correlation coefficients. If the 
noise covariance matrix has the length of M, it can be 
constructed as a symmetric Toeplitz matrix with the first M 
values of the noise auto-covariance coefficients.  

 
2.4. Comparison algorithm 
 
This SCS algorithm is compared with a Wiener filtering 
approach, of which the code is provided by Timo Gerkmann 
[19-21]. This algorithm was chosen, because Wiener filters 
are used frequently in today’s hearing aids and CS-WF is a 
competitive state of the art algorithm [19-21]. Since the a 
priori SNR of the WF approach is estimated by the cepstral 
smoothing method, we refer this approach as CS-WF herein. 
There are two critical techniques in CS-WF. One technique 
is to estimate the noise power spectral density (NPSD) 
based on a speech presence probability (SPP), where the a 
priori SNR is a fixed value in estimating the SPP [21]. SCS 
also adopted the same NPSD estimation method as 
described in section 2.3. The other technique is that a priori 
SNR is estimated by temporal cepstrum smoothing with bias 
compensation [19, 20] where this technique could reduce 
the musical noise and suppress the non-stationary noise 
effectively.  

3. EVALUATION 
 
In order to evaluate the perceptual effects of the proposed 
SCS and the comparison CS-WF algorithms, we performed 
recognition tests through NH and HI listeners. Bamford-
Kowal-Bench (BKB) [24] sentences recorded by a female 
British speaker were used as speech material. The sentence 
database comprised of 21 lists with 16 sentences in each list 
and 3 or 4 keywords in each sentence. Speech shaped noise 
(SSN) and babble noise were added in various quantities. 

 
3.1. Subjective speech intelligibility tests 
 
3.1.1 Participants 
Eight NH listeners and three HI listeners with sensorineural 
hearing loss participated in this experiment. All subjects 
were native English speakers. The NH listeners had hearing 
thresholds at or below 20 dB HL from 250 Hz to 8 kHz 
(confirmed by PTA), and their ages ranged from 20 to 36. 
The 3 HI listeners all had moderate-to-severe sloping high 
frequency hearing losses. Tests were monaurally on the 
better ear. The audiograms of the tested ear of the HI 
listeners are shown in Figure 2. All the HI listeners were 
experienced hearing aid users and their ages ranged from 18 
to 25. The tests were performed with their hearing aids 
taken off, and NAL procedure [8] was applied to each HI 
subject individually to compensate for hearing threshold 
elevation.  

 
Figure 2 Audiograms of the tested ear of the 3 HI listeners. 

 
3.1.2 Procedure 
A total of six conditions were tested: two noise types (SSN, 
babble) and three noise reduction conditions (‘noisy’, SCS, 
WF). ‘Noisy’ indicates addition of noise without noise 
reduction strategies to show baseline performance. 
Sentences were randomly selected from the corpus for each 
test condition. Subjects were instructed to repeat as many 
words as they could after listening to each sentence with no 
feedback given during the tests. For familiarization, 
participants practiced the procedure with one randomly 
selected condition. The order of the six conditions was 
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randomized but balanced among the listeners using a latin 
square. Each experiment took around half an hour. 

A three-up one-down adaptive procedure was used to 
find the speech-to-noise ratio required for 79.4% correct 
recognition in each condition [5], which is defined as 
speech reception threshold (SRT) in dB. A sentence was 
deemed to have been recognised correctly when at least two 
keywords were repeated correctly. Sentence order was 
controlled so that participants did not receive the same 
sentence twice. The step size was 1 dB. All sound files from 
-10 dB to 15 dB, with and without noise reduction 
algorithms in different SNRs, were pre-processed offline.  

All listeners were seated in a sound-isolated room and 
listened to the sounds presented through a Sennheiser HDA 
200 headphone presented through a Behringer UCA202 
sound card and Creek OBH- 21SE headphone amplifier. 
The presentation levels of speech were kept at 65 dB SPL 
for NH listeners and were adjusted individually for each HI 
listener to a comfortable listening level. 
 
3.1.3 Subjective experimental results 

 

Figure 3 SRTs for different conditions in normal hearing 
and hearing impaired listeners. SSN: speech shaped noise; 
Noisy: noisy speech without noise reduction algorithms; 
WF: Wiener filtering; SCS: sparse coding shrinkage. Error 
bars show 1 standard deviation. 

Figure 3 shows the average performance of all participants 
in all six test conditions: SSN-Noisy, SSN-WF, SSN-SCS, 
Babble-Noisy, Babble-WF, Babble-SCS, for both NH (left) 
and HI subjects (right). For NH subjects, the effect of noise 
reduction algorithm is not significant [F(2,14)=1.33, 
p>0.05], but the effect of noise type is significant for NH 
subjects [F(1,7)=8.13, p<0.05]. There is no interaction 
between noise type and noise reduction algorithm 
[F(2,14)=2.74, p>0.05]. These results are in accordance 
with previous evaluations [25] showing that most single 
channel noise reduction algorithms cannot improve speech 
intelligibility in NH listeners. For HI subjects, neither the 

noise reduction algorithm nor the noise type has a 
significant effect [F(2,4)=7.82, p>0.05, and F(1,2)=3.28, 
p>0.05, respectively]. There is no interaction between noise 
reduction algorithm and noise type [F(2,4)=5.74, p>0.05]. 
Because of the limited number of HI subjects in the 
experiments so far, the investigation is underpowered. At 
this state, we cannot say for sure if there is no effect of 
processing algorithm or noise type. Further experiments 
involving more subjects will clarify this point. Individual 
inspection of results shows that all three HI subjects had 
better speech intelligibility with both noise reduction 
algorithms. This implies that HI listeners might benefit more 
from noise reduction strategies than NH listeners. In general, 
this might be explained by the fact that noise reduction 
algorithms distort the speech to some degree. Due to 
suprathreshold deficits like reduced frequency selectivity, 
HI subjects are more used to listen to distorted speech than 
NH subjects. This is also in accordance with [26] where it 
was shown that speech intelligibility degrades significantly 
in NH subjects when speech is distorted compared to HI 
subjects. This is also in accordance to the finding that noise 
reduction schemes based on the ideal binary mask could 
benefit HI listeners more than NH listeners [27].  

For HI listeners, SCS shows slightly higher 
intelligibility improvement, especially in speech shaped 
noise than CS-WF. This motivates us to further develop 
noise reduction strategies that are optimized for HI listeners. 
Sparse stimuli could compensate further for suprathreshold 
deficits. The advantage of noise reduction using sparse 
stimuli have already been demonstrated for listeners who 
are profoundly hearing impaired and use a cochlea implant 
[14-16]. 

The error bars in Fig. 3 illustrate that the hearing 
impaired subjects show correspondingly large inter-subject 
variability compared to normal hearing subjects. We assume 
that this is due to individually different auditory deficits and 
individual experience with hearing aids. It is expected that if 
we were able to give hearing impaired participants more 
practice with new noise reduction algorithms, they would 
benefit even more from the sparse noise reduction algorithm 
in terms of speech intelligibility.  

 
4. CONCLUSIONS 

 
Although the number of participants in our experiments was 
small, we conclude that noise reduction strategies hold more 
promise to help HI subjects than NH subjects in severe 
noise environments. Further experiment with higher number 
of participants will clarify this point. In informal questions, 
HI subjects reported that both noise reduction algorithms 
improve speech quality. 

Compared to the CS-WF algorithm, SCS has the 
potential to bring more benefits to hearing impaired subjects 
especially in stationary noise, such as speech shaped noise. 
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Although the difference is not significant in listening 
experiments, the trend is visible. 

We conclude that noise reduction algorithms that 
consider auditory deficits probably help HI listeners more 
than noise reduction algorithms that were originally 
developed for NH listeners. With more practice, 
performance probably further improves when HI listeners 
learn to adapt to the increased speech distortion in SCS. 
This motivates future research in noise reduction algorithms 
that take account of auditory deficits rather than simply 
adopting noise reduction algorithms from common 
telecommunication systems. 
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