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ABSTRACT

In this paper, we consider source coding in wireless acoustic
sensor networks (WASNs). A WASN is a network of sensors,
where each sensor is equipped with a microphone and thereby
forming a distributed microphone array. In addition to a mi-
crophone, the sensors communicate via radio channels. Thus,
a sensor observes an acoustic noisy measurement in addition
to receiving a coded correlated noisy measurement from a
neighboring sensor node. Given a set of sensors, the prob-
lem is to efficiently encode the noisy observations and/or re-
encode the received coded noisy observations. Furthermore,
one seeks a routing strategy that e.g., minimizes the sum rate
subject to some distortion constraints. Towards that end, we
define a new source coding concept related to WASNs which
we denote sequential remote source coding, and present an
achievable rate region in the quadratic Gaussian case.

1. INTRODUCTION

Wireless sensor networks (WSNs) and microphone arrays
have both (separately) received increasing attention. Their
combination, which is denoted wireless acoustic sensor net-
works (WASNs), forms a challenging field. In the following,
we provide a brief survey of results related to WASNs and
source coding within WASNs.

1.1. Wireless Sensor Networks

Wireless sensors are low power measurement devices, which
are equipped with a radio transmitter and receiver, and in ad-
dition they might have a digital signal processing unit and
some memory. Due to the low power constraints, the sensors
cannot individually transmit their measurements over great
distances, and it is therefore necessary to form sensor net-
works containing a number of wireless sensors. A routing
protocol for WASNs describes the path and methodology used
when conveying data via several sensors to a base station.

This work is partially supported by Anillos Conicyt grant ACT-53 and
Fonedcyt grant 1120468.

1.2. Microphone Arrays
A microphone array consists of a set of spatially distributed
microphones. The main idea is to be able to achieve diversity,
i.e., obtain several spatio-temporal versions of a noisy sound
field. This is useful for e.g., source localization and tracking,
as well as speech and audio enhancement, speaker separation,
speaker identification etc.

It was recently shown that the underlying sound field in
any spatial position may be accurately predicted by knowing
the sound field in a certain number of positions [1].

1.3. Wireless Acoustic Sensor Networks
In a WASN each sensor node is equipped with (at least) one
microphone to capture acoustic signals. In addition, a sen-
sor node is equipped with a radio receiver and radio transmit-
ter. Thus, a node may simultaneously receive acoustic infor-
mation while receiving or transmitting via radio communica-
tion.1 We refer to [2] for a survey of applications of WASNs.

1.4. Source Coding in Wireless Sensor Networks
The measurements obtained by a wireless sensor are usually
noisy due to the fact that the acquisition must be of finite ac-
curacy and the fact that the signal is often corrupted by noise
prior to being observed. Thus, instead of coding the source X
one has to encode the observed noisy source, say X+N . This
problem is well known in the information theoretic commu-
nity and is usually referred to as remote source coding [3–5].

Let X and Y be two correlated sources, where X is
known only at the encoder and Y is known only at the
decoder. If the joint statistics of (X,Y ) are known at
both the encoder and the decoder, then it is possible to
leverage on results from distributed source coding, and
thereby encode X at a rate R, which is sandwiched by
RX(D) ≥ R ≥ RX|Y (D), where RX(D) denotes Shan-
non’s rate-distortion function (RDF) and RX|Y (D) denotes
Shannon’s conditional RDF [6–8]. Interestingly, it can be
shown that in the quadratic Gaussian case, one can achieve
R = RX|Y (D) [7].

1There might also be loudspeakers on the sensors, which could be used
for acoustic communications. However, we do not explore this idea here.
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The case where sensor node i observes Yi = X +Ni, i =
1, . . . ,M , and knows the joint statistics of (Y1, . . . , YM ), but
does not know the actual realizations of Yj , j ̸= i, is usually
referred to as the CEO problem [9, 10]. In this problem, the
observations are separately encoded and transmitted to a com-
mon decoder and has been treated in several works related to
wireless sensor networks, cf. [11, 12].

In [13], source coding was considered jointly with routing
and power allocation for WSNs and the interaction of rout-
ing and source coding in multi-hop networks was addressed
in [14,15]. Energy-efficient source coding in WSNs was con-
sidered in [16, 17].

Recently, ideas from compressed sensing have been ap-
plied to speech and audio in [18] and to WSNs in [19, 20].
There has also been some recent works regarding source cod-
ing especially for WASNs. In particular, the multi-terminal
rate-distortion function for a Gaussian acoustic field was
found in [21], and in [22] it was shown that oversampling and
A/D conversion is rate beneficial in WASNs.

1.5. Scope of Paper
In this paper, we are interested in coding the noisy measure-
ments Yi = X + Ni, i = 1, . . . ,M, obtained in a WASN
having at least M nodes. We assume that a given sensor is
not able to directly communicate with the central server. In
particular, we assume that the coded measurement from sen-
sor node i needs to be transmitted to sensor node i+1. Thus,
each sensor node receives a noisy coded version, say Ỹi−1, of
the sound source from a neighboring sensor node as well as its
own noisy measurement Yi = X+Ni. The problem at hand is
therefore to determine an efficient coding strategy for sensor
node i to jointly encode the two correlated sources (Yi, Ỹi−1)
subject to a distortion constraint Di. Towards that end, we
define the concept of sequential remote source coding, and
present an achievable rate region in the quadratic Gaussian
case. The rate region is tight in the case where no side in-
formation is available. We further show how to find a rate-
efficient routing in a WASN by minimizing the sum rate over
all nodes given a set of node distortion constraints.

2. GENERAL PROBLEM FORMULATION

Let Xi ∈ R be the ith source, where i = 1, . . . ,M . Since we
have several sources broadcasting simultaneously as well as
background noise, the received source Yj ∈ R at sensor j is
given by2

Yj = HT
j X̄ +Nj , j = 1, . . . , S, (1)

= Hj,iXi +
∑
k ̸=i

Hj,kXk +Nj , (2)

2We note that this is a simplified model, which only shows instantaneous
real mixtures. In general, audio recordings consists of convolutive mixtures
due to reflected and delayed signals. To obtain instantaneous mixtures, one
could e.g., apply a time-frequency transformation and consider a (complex)
instantaneous mixture for each frequency.

where Hj ∈ RM denotes the acoustic channel mixing vector
between the M sources and sensor j, Hj,k is the kth element
of Hj , Nj ∈ R denotes the background noise at sensor j,
and X̄ ∈ RM is the vector composed of the original M inde-
pendent sources. Each of the S sensors receives a mixed and
noisy version of all the M sources, but we are here only inter-
ested in one of them, say Xi, and treat the remaining sources
as noise.

Sensor j needs to encode Yj and transmit the coded ver-
sion, say Ŷj , to the gateway. The gateway may be located far
away from the sensor node, and it is therefore necessary to
use multiple sensor nodes as intermediate relays. However, in
addition to act as a relay, the sensor node also has to transmit
its own measurement. Thus, the sensors have to decide about
a jointly optimal strategy for compressing relay signals and
measurements.

3. RESULTS

We begin by introducing a new concept in remote source cod-
ing, which we denote sequential remote source coding. First,
let Yi = X + Ni be a noisy observation of X where Ni

is independent of X . Let fi be an encoding function. Let
gi, i = 1, . . . ,M , be the corresponding decoding functions
satisfying d(X, gi(fi)) ≤ Di, where d(·, ·) is the distortion
measure, which in this work is the mean squared error. Thus,
even though we wish to encode Yi, the distortion is w.r.t. X .

Definition 1 (Sequential Remote Source Coding). At node i,
Yi is observed, the output of fi−1 is received, and the problem
is to form fi(Yi, fi−1), which will be transmitted noiselessly
to node i+ 1.

Remark 1. Note that sequential remote source coding is re-
lated to successive refinement, where the main difference is
that, at each refinement stage, we do not have access to the
original source but a new noisy version of it. In addition, we
also allow that Di < Dj for j > i, which does not make any
sense in conventional successive refinement.

Definition 2 (Achievable Rates in Sequential Remote Source
Coding). Let D = {Di}Mi=1 denote an ordered set of M dis-
tortions. A rate tuple (R1, . . . , RM ) is said to be sequentually
achievable with respect to the distortion tuple D, if there ex-
ists a sequence of encoders fi, i = 1, . . . , fM , such that

log2 |fi| ≤ Ri, i = 1, . . . ,M,

where |fi| denotes the codebook size of fi, and such that

d(gi(fi), X) ≤ Di, i = 1, . . . ,M.

The following theorem provides a set R = {Ri}Mi=1 of
sequentially achievable rates given the set D = {Di}Mi=1 of
distortions, where (Ri, Di) denotes the rate-distortion pair as-
sociated to node i.
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Theorem 1. Let X be a zero-mean memoryless scalar Gaus-
sian process with variance σ2

X and let the noisy observa-
tions be given by Yi = X + Ni, where X is independent of
Ni,∀i and Ni, Nj , i ̸= j are mutually independent Gaussian
sources of variances σ2

Ni
. Then, a sequentially achievable

rate Ri for the ith node at distortion σ2
Xσ2

i

σ2
X+σ2

i
< Di ≤ σ2

X is:

Ri(Di) =
1

2
log2

(
σ2
X

Di

)
+

1

2
log2

(
σ2
X

σ2
X + σ2

i −
σ2
i σ

2
X

Di

)
,

(3)
where σ2

1 = σ2
N1

, and for i ≥ 2

σ2
i =

1(
1

σ2
i−1+ϕi−1

+ 1
σ2
Ni

) ,

where
ϕi = (σ2

X + σ2
i )

1

22Ri − 1
.

Proof. See Section 6.

Remark 2. The general case with correlated noises given by
(2) is also considered in Section 6.

Remark 3. If at node i, the joint statistics of subsequent
nodes are known and no distortion Di is enforced, it is clear
that one can improve upon Theorem 1 by using conven-
tional distributed source coding techniques (e.g., Wyner-Ziv
binning). However, if distortion Di is enforced without the
knowledge of additional observations (side information), then
it can be shown that Theorem 1 is tight.

For a WASN having M nodes, one might be interested in
the distortion at each node, or perhaps only at a select few
nodes, e.g., the end node. In the latter case, one aims at mini-
mizing the sum-rate over all nodes, subject to the final distor-
tion at the end node. We put these observations into a Lemma.

Lemma 1. An achievable sum-rate R subject to a subset of
distortions D̃i, i ∈ ℓ ⊆ {1, . . . ,M} and a set of noisy nodes
{Yi = X +Ni}, i = 1, . . . ,M , is given by

R = min
{Dj}

M∑
i=1

Ri(Di), s.t.
σ2
Xσ2

i

σ2
X + σ2

i

< Di ≤ D̃i, i ∈ ℓ,

and σ2
Xσ2

i

σ2
X+σ2

i
< Di ≤ σ2

X , ∀i, where Ri(Di) is given by (3). ∇

Interestingly, Lemma 1 provides an optimal routing (in
terms of an achievable sum-rate) in a WASN as well as the
optimal bit distribution subject to a set of node distortion con-
straints.

4. EXAMPLES

In this section, we illuminate some subtle implications of
Theorem 1 and Lemma 1.

Let Y1 = X + N1 and Y2 = X + N2, where σ2
X =

1 and let us consider the Gaussian case where we only are
concerned about the distortion D2 at sensor 2. In this case,
we observe Y2 and we could also receive a coded version of
Y1 from sensor 1.

4.1. Example 1

Let σ2
N1

= 1/4 and σ2
N2

= 1/2. Moreover, let D2 = 1/4.
Notice that without coding at sensor 2, the MMSE at sensor
2 is 1/3 and it is therefore not possible to achieve the desired
distortion D2 = 1/4 using only sensor 2. However, choosing
D1 = 1/3, leads to R1 = 1.29 bits and R2 = 2 bits, which
gives D2 = 1/4 as required.

4.2. Example 2

Let D2 = 1/3 + 0.00001 and σ2
N2

= 1/2. Then, the desired
distortion D2 is achievable by coding only Y2 at a rate R2 =
8.01 bits. However, letting σ2

N1
= σ2

N2
, then, by choosing

e.g., D1 = 1/2, the resulting rates are R1 = 1 bit and R2 =
1.58 bits, which leads to a significantly smaller sum-rate than
when only coding Y2.

5. SIMULATION STUDY

Since audio is generally not Gaussian distributed, Theorem 1
provides only an approximation for real-world signals. To
illustrate the usefulness of Theorem 1, we consider next a
practical setup with a single loudspeaker and two sensors (mi-
crophones) and where we only exploit the spatial correlation
of the observed signals. The sensors are distanced 16 cm a
part, and the loudspeaker is oriented with a -13 degree angle
towards the sensors. The source signal emitted from the loud-
speaker is a trumpet signal, and the signal X reaching sensor
1 contains delayed and reflected versions of the source. The
mixed signal X at sensor 1 will be used as the reference sig-
nal that needs to be coded and sent to the base station via
sensor 2. Due to measurement noise, the measured signal is
Y1 = X +N1, where σ2

N1
= 0.01.

At the second sensor, we measure the acoustic signal Y2,
which can be interpreted as Y2 ≈ X + N2, where the vari-
ance σ2

N2
might not be exactly known at the sensors. In this

simulation, we find it to be σ2
N2

= 1.23. For comparison,
we also measure the performance when the sensor wrongly
assumes that σ2

N2
= 0.5 (see below). Thus, the minimum dis-

tortion due to linear estimation of X given only Y2 is Dmin
2 =

0.8631. To achieve this minimum, one would require an in-
finite bitrate R2 when coding Y2. On the other hand, if we
encode Y1 at sensor 1 and send it to sensor 2, then the distor-
tion D2 can be significantly reduced below Dmin

2 .
At this point, we use the techniques outlined in the

proof of Theorem 1, and furthermore use simple uniform
scalar quantizers followed by scalar entropy coding. Specifi-
cally, V1 = α1Y1 is encoded into U1 = ⌊V1/∆1⌉∆1, where
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∆1 = 1/10 denotes the step-size of the quantizer and ⌊·⌉ de-
notes rounding to nearest integer. Then, at sensor 2, we sweep
the step-size ∆2 of the quantizer in steps of 0.1 in the interval
[0.1; 1]. For each value of ∆2, we form the sufficient statistics
V2 see (4), which is then quantized into U2 = ⌊α2V2/∆2⌉∆2

using rate R2. The resulting simulated (theoretical) average
rate R1 at sensor 1 is 5.24 (5.24) bits/sample after entropy
coding and the corresponding distortion is D1 = 0.0107
(0.0106). The rate R2 and distortion D2 at sensor 2 is shown
in Fig. 1. It can be seen that the simulations using real audio
signals are close to the theoretically achievable performance
based on Gaussian assumptions.
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Fig. 1. Distortion-Rate performance for a sequential remote
source coding problem.

6. PROOF OF THEOREM 1

For clarity we split the proof into smaller steps, which ex-
plains the encoder and decoder operations at the individual
nodes in the WASN.

Node 1: We observe Y1 = X + N1 and form V1 =
E[X|Y1] = α1(X + N1). Then we encode V1 into U1 =
α1(X + N1) + Z1. The variance σ2

Z1
of Z1 is chosen such

that the resulting MSE distortion due to estimating X from U1

is D1. This is a standard remote source coding problem where
the minimum rate R1 for transmitting U1 with distortion D1

is given by [5]

R1 =
1

2
log2

(
σ2
X

D1

)
+

1

2
log2

 σ2
X

σ2
X + σ2

N1
−

σ2
Xσ2

N1

D1

 .

The relationship between the coding rate R1 and σ2
Z1

is

σ2
Z1

=
σ4
X

σ2
X + σ2

N1

2−2R1

1− 2−2R1
.

Node 2: We receive U1 from Node 1 and observe Y2, thus,
we have two noisy observations of X . Let 1

α1
U1 = X +

N1 +
1
α1

Z1 = X +N1 + Z ′
1. Then we have a remote source

coding problem with two noisy observations X + N1 + Z ′
1

and X + N2. A similar problem was treated in [23] and it
was shown that rather than jointly encoding both sources it
is enough to consider a single scalar source, say V2, which
provides a sufficient statistics of (Y2, U1) with respect to X .
First let σ2

2 be given by σ2
2 = 1(

1

σ2
N1

+σ2
Z′
1

+ 1

σ2
N2

) , where

σ2
Z′

1
= (σ2

X + σ2
N1

)
2−2R1

1− 2−2R1
.

Then we form V2 as the following linearly weighted sum of
1
α1

U1 and Y2:

V2 = σ2
2

(
U1/α1

σ2
N1

+ σ2
Z′

1

+
Y2

σ2
N2

)
. (4)

The variance of V2 is σ2
V2

= σ2
X + σ2

2 . Since X,Y2, and V2

are jointly Gaussian, it can be shown that V2 is a sufficient
statistics for X , so that X ↔ V2 ↔ (U1, Y2). It was shown
in [23], that the remote RDF of a source is the same as the re-
mote RDF for a sufficient statistics of the noisy source. Thus,
we will consider coding of V2. Towards that end, we form
E[X|V2] = α2V2 and encode it into U2 = α2V2 + Z2 using
rate R2. The Shannon DRF for the source α2V2 is given by

DV2(R2) = var(α2V2)2
−2R2 =

σ4
X

σ2
X + σ2

2

2−2R2 . (5)

The MSE due to estimating α2V2 from α2V2 + Z2 is

var(α2V2)σ
2
Z2
/(var(α2V2) + σ2

Z2
),

which when equalized to (5), makes it possible find σ2
Z2

as a

function of R2, that is σ2
Z2

=
σ4
X

σ2
X+σ2

2

2−2R2

1−2−2R2
.

Node 3: We receive U2 from Node 2 and observe Y3. We
now form V3 such that X ↔ V3 ↔ (U2, Y3). To do this, we
first let σ2

3 be given by

σ2
3 =

1(
1

σ2
2+σ2

Z′
2

+ 1
σ2
N3

)

and then form V3 as V3 = σ2
3

(
U2/α2

σ2
2+σ2

Z′
2

+ Y3

σ2
N3

)
. The variance

of V3 is given by σ2
V3

= σ2
X + σ2

3 .
Node i: In general, we receive Ui−1 and observe Yi. We

now form Vi such that X ↔ Vi ↔ (Ui−2, Yi). The variance
of Vi is given by V1 = σ2

X + σ2
N1

and for i > 1 we have
σ2
Vi

= σ2
X + σ2

i , where σ2
i = 1

1
2

(
1

σ2
i−1

+σ2
Z′
i−1

+ 1

σ2
Ni

) , and
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where σ2
1 = σ2

N1
and for i > 1, we have

σ2
Z′

i
= (σ2

X + σ2
i )

2−2R2

1− 2−2R2
.

We finally note that in the more general case with corre-
lated noises described by (2), we are interested in obtaining
a representation of, say Xi. At sensor j we receive Yj =
Hj,iXi +

∑
k ̸=i Hj,kXk + Nj , and at sensor ℓ we receive

Yℓ = Hℓ,iXi+
∑

k ̸=i Hℓ,kXk+Nℓ. Here we would form the
new variable Ỹ = 1

αj+αℓ
(

αj

Hj,i
Yj +

αℓ

Hℓ,i
Yj) = Xi+ϕ, where

ϕ is independent of Xi, and where the α’s denote the MMSE
estimators of Xi given 1

Hj,i
Yj ,

1
Hℓ,i

Yℓ. Then, it can be shown

that Ỹ is a sufficient statistics of (Yj , Yℓ) wrt. Xi.

7. CONCLUSIONS AND DISCUSSION

We have provided an overview of source coding in WASNs.
Moreover, we presented new results for the case where a sen-
sor receives only a single coded observation from a neighbor-
ing sensor in addition to its own observation. We showed how
to efficiently jointly encode the received and observed sources
in the quadratic Gaussian case. It should be noted, that it is
straight-forward to extend these results to the case where a
sensor may receive several coded observations. Future work
involves considering vector sources, colored sources, and the
use of noise-shaped coding, not affecting the transfer function
of the source [24].
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