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ABSTRACT

The Non-Local Total Variation (NLTV) has been recently for-

malized to define new functionals for signal and image analy-

sis, that strictly fit into the widely used variational framework

but overcome the locality limitation of the classical TV.

This work lies in the context of disparity estimation in

a variational framework, where Total Variation represents a

common tool to impose a smooth behavior to the desired solu-

tion. Here, with reference to a recently proposed disparity es-

timation technique, several new smoothness constraints based

on a NLTV formulation are presented, to prove the effective-

ness of the non-local approach in encompassing structural

prior knowledge in the problem. Results on several stereo

pairs from the Middlebury database are very encouraging, and

highlight the importance of a more accurate formulation of

the smoothness constraint in the disparity estimation problem.

Index Terms— disparity estimation, total variation, vari-

ational estimation, non-local means, set-theoretic estimation

1. INTRODUCTION

Among the recent advances in imaging and video technol-

ogy, the activities related to the acquisition and playback of

3D scenes are certainly occupying an important role. A direct

consequence is the growing interest of research for the estima-

tion of depth information from multi-view sources, an useful

tool for a considerable range of applications: from 3D video

coding and rendering for 3DTV or FTV (free point-of-view

television) to the enhancement of machine vision systems.

When the source is a pair of rectified views of a scene, the

depth information can be easily related to the disparity among

the two views, which represents the difference between the

projections of the 3D scene on each viewpoint in terms of

displacement between the homologous points.

Research on disparity estimation techniques has been go-

ing on for years so far [1]. Earlier methods were mainly based

on a local approach, seeking for correspondences among

points of the two views only within a certain spatial window.

These methods, despite their relatively reduced complexity,

are likely to fail when no salient feature (textures, contours,

keypoints, etc.) emerge in the local windows to drive the

matching process.

The methods based on a global optimization approach

have been introduced in more recent times to address these

issues. The key point of these techniques relies on the defini-

tion of an energy functional to minimize, to which the whole

disparity field globally contributes. Along with discrete opti-

mization techniques, e.g. based on graph cuts [2], a class of

methods that proved particularly competitive is that of vari-

ational techniques, that apply a gradient descent approach to

minimize the energy functional, like in [3, 4]. A technique

of particular interest has been presented in [5], in which a

variational formulation of the disparity estimation problem is

proposed in the framework of convex optimization.

Enforcing a smooth behavior to the disparity map is a

common practice, since the problem is ill-posed. To this aim,

modeling discontinuities by means of the Total Variation (TV)

is a widely used method in many imaging problems [6, 7, 3,

4]. However, the performance limitations of the TV mini-

mization approach have been often highlighted for several ap-

plications, including image denoising [7] and optical flow es-

timation [8]. These limitations spring up in the form of over-

smoothing across image contours and/or structural deforma-

tions, and are mainly due to the “locality” of the gradient op-

erator involved in the computation of the TV, that only allows

for the evaluation of low-level discontinuities, preventing the

use of any structural (e.g. geometrical or textural) prior.

To overcome this limitation, a generalized form of TV has

been recently formalized in [9], namely the Non-Local Total

Variation (NLTV), which through the definition of non-local

derivatives enables the weighted interaction of each pixel

with any other in the image domain. Consequently, it makes

possible to process not only color/intensity differences and

other low-level image features, but also structural and textu-

ral features which can be extracted at higher scales. In [7]

the efficiency of this approach in shown for image denoising,

where the use of redundancies on a larger scale is proposed by

means of a new definition of neighborhood: a pixel j belongs

to the neighborhood of i if “a window around j looks like a

window around i”. A subject closer to the one of this paper is
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discussed in [8], where a NLTV regularization is imposed on

the desired optical flow by replacing classical derivatives by

weighted pixel differences on large areas.

In this work, the aim is to convey the principles of NLTV

smoothing into the discontinuity model originally proposed

in [5]. The smoothness constraint is here reformulated in the

NLTV framework, and several alternative definitions of the

weighting function will be introduced and tested.

2. REFERENCE VARIATIONAL FRAMEWORK

The estimation of the disparity field for a rectified stereo pair,

namely the stereo matching problem, consists in seeking a

correspondence between pixels of the two images that repre-

sent the projection of the same point of the three-dimensional

scene. The associated displacements between homologous

pixels constitute the target disparity field u. In the variational

framework, this problem is classically formulated as the min-

imization of an energy J(u), jointly taking into account a data

likelihood term L(u) and a regularization term that controls

the smoothness of the final solution. L(u), positive definite,

is directly proportional to the difference between one image

of the stereo pair and the other compensated by means of the

disparity field u. The Taylor expansion of the functional J

around an initial estimate u0 of the disparity [3, 8] enables

the use of variational techniques for minimization.
In this work, we refer to both the variational formulation

and optimization method introduced in [5], in which the au-
thors rewrite the problem in the convex optimization frame-
work. More precisely, founding on the principles of set the-
oretic estimation [10], a solution is sought that provides the
minimum cost in terms of data likelihood, subject to an ide-
ally arbitrary number of constraints, each expressed in the
form of a closed convex set and whose intersection deter-
mines the feasibility set of the problem. In particular, two
constraint sets have been used based on straightforward prop-
erties of disparity field, namely a limited disparity range set
R = {u : u(p) ∈ [umin, umax], ∀p} and a TV based smooth-
ness set defined as

S = {u : TV(u) =
∑

p

√

(∇xu(p))2 + (∇yu(p))2 < τ}, (1)

∇u = (∇xu,∇yu) being the gradient of the disparity u. The

minimization problem can be eventually written as

minimize
u

L(u) + ιR(u) + ιS(∇u), (2)

where, for any closed convex set C, ιC is the characteristic

function of C1.

An efficient convex optimization tool based on proximal

splitting, namely the Parallel ProXimal Algorithm (PPXA+),

has been recently introduced [11] to minimize a sum of

convex and lower-semicontinuous functions. In the most

1In the convex analysis literature, the characteristic function of a convex

set C, namely ιC(x), has value 0 if x ∈ C, +∞ otherwise

(a) (b) (c)

Fig. 1. Details of disparity maps for the Teddy stereo pair:

(a) ground truth, (b) initial estimate of the disparity (MAE =

0.86), (c) disparity map provided by PPXA+ with TV con-

straint (MAE = 0.75).

general form, each function of the sum may take as argument

a different linearly transformed version of the minimizing

variable. Since the characteristic functions are convex and

lower-semicontinuous, it is easy to notice that the problem

in Eq. 2 can be tackled using PPXA+ if the convexity and

lower-semicontinuity condition is verified also for the likeli-

hood term L(u). This is the case in this work, where we rely

on a L1-norm based likelihood function.

3. NON-LOCAL TOTAL VARIATION CONSTRAINTS

A major concern about the smoothness constraint used in [5]

is that the isotropic Total Variation constraint in Eq. (1) takes

into account all discontinuities in the disparity map in the

same way. This means that the smoothing action induced by

the PPXA+ algorithm on the current estimate at each itera-

tion makes no discrimination between undesired discontinu-

ities, due to errors in the initial estimate, and admissible ones,

occurring in correspondence of edges among objects at differ-

ent depths in the scene. As a main effect, the final solution is

generally not immune by over-smoothing through “real” dis-

parity edges or keeping undesired block effects resulting from

the initial estimation.

To better appreciate such effects, let us observe the de-

tails in Fig.1: the initial disparity (second column) is evi-

dently affected by errors w.r.t. the ground truth (first column),

but presents globally sharp contours, while the result obtained

with PPXA+ algorithm using the TV constraint (PPXA+/TV

from now on) of Eq. 1, although globally closer to the ground

truth, suffers from over-smoothing of “real” contours. To mit-

igate this effect, one possibility is to limit the intensity of

the smoothing action, both enlarging the constraint set, by

augmenting τ in Eq. (1), or reducing the contribution of the

smoothing action in the weighted averaging step of PPXA+.

Given these observations, in this work several new discon-

tinuity measures have been tested, that rely on the principles
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of Non-Local Total Variation introduced in Section 1. In the

context of this work, these characteristics are mainly used to

adapt the smoothing action to the different structural contexts

in which discontinuities happen in the disparity map.

Formally, the Non-Local Total Variation operator used in

this work has the following form:

NLTV(u) =
∑

p∈D

∑

q∈Np

ωpq |u(p)− u(q)|, (3)

with Np ⊆ D being a suitably chosen neighborhood of pixel

at position p and ωpq the weight controlling the interaction of

pixel p with the pixel q belonging to its neighborhood. Note

also that the L2-norm of the original TV formulation has been

replaced by the anisotropic L1-norm in Eq.( 3): this choice is

justified by the better preservation of corners provided by this

norm in the TV framework [9]. Using the NLTV as disconti-

nuity measure changes the problem formulation of Eq. 2 into:

minimize
u

L(u) + ιR(u) + ιS′(F u), (4)

whereS′ = {u : NLTV(u) < τ}, andF = (F1, . . . , F|Np|)
>

is a concatenation of linear operators such that:

(Fi u)(p) = u(p)− u(qi), with qi ∈ Np. (5)

In the presented non-local framework, the definition of

a discontinuity measure is complete once a choice of the

weights ωpq is given for each neighborhood Np. In the fol-

lowing, several options for this choice will be proposed and

discussed, and a comparison among the different solutions

will be provided in Sect. 4. All the weighting functions are

introduced for the case of grayscale images, to comply with

the reference PPXA+ based technique.

3.1. Constant Weights

A simple solution consists in equally weighting all the points

in every neighborhood. Considering a fixed size neighbor-

hood Np, this choice amounts to fixing

ωpq =
1

|Np| − 1
∀p, q. (6)

Note that such choice transforms the general formulation of

Eq. (3) into a sort of multi-directional formulation of the clas-

sical anisotropic TV, with gradients in the various directions

expressed as absolute differences between the central pixel

and each pixel in the neighborhood. Improvements may be

expected due to the finer description of directional disconti-

nuities.

3.2. Patch-based Weights

A second more farseeing choice makes use of an approach

inspired by the Non-Local Means denoising algorithm de-

scribed in [7]: given two locations p and q ∈ Np, the weight

ωpq will be dependent on the similarity between the K × K

patches Bp, Bq built around the pixels p and q on the texture

image (the image of the stereo pair onto which the disparity

is mapped). More precisely:

ωpq = exp

(

−Gσ ∗ ‖Bp −Bq‖2

h2

)

, (7)

where ‖Bp−Bq‖2 is the L2-norm difference between the two

patches in vector form, Gσ is a Gaussian kernel with standard

deviation σ and h > 0 is a filtering parameter.

Based on the assumption that a change in the disparity

generally corresponds to a change into the textural proper-

ties of the involved objects, this choice allows to reduce the

contribution to NLTV of a discontinuity in the disparity map

that matches with an important change in the texture image.

Correspondingly, the smoothing action across this “probably

real” discontinuity is limited.

3.3. Similarity-Proximity based Weights

When computing weights through patch differences, as de-

scribed in the previous section, the main issues concern the

choice of the patch size K . Using bigger patch sizes, differ-

ences in the visual appearance may generally be better caught,

but the similarity between two “close” patches whose central

pixels lie across an edge may result enhanced, and the corre-

sponding weight be too high. On the contrary, small patches

become too sensitive to noise and micro-textural variations.

To avoid this trade-off, another possibility is to refer to the

weighting strategy described in [12], which measures changes

in the visual appearance by observing single pixel values and

their Euclidean distance on the image support, namely:

ωpq = exp

[

−

(

∆cpq

γc
+

‖p− q‖

γp

)]

, (8)

where ∆cpq = |I(p) − I(q)| is the absolute intensity dif-

ference between values of p and q, observed on the texture

image I that matches with disparity, and γc > 0, γp > 0 are

parameters depending respectively on the image values do-

main and the size of the neighborhood Np. This choice pro-

vides a solution similar to [8], with the main difference that

the smoothness prior is expressed as a constraint set instead

of a regularization term, to match the formulation of Eq. (2).

3.3.1. Texture-based Similarity

As a final variant proposed in this work, a solution is sought

that might use a more accurate description of local visual

differences without incurring all the drawbacks of the patch-

based approach described in Sec. 7. To this aim, the weight

expression of Eq. (8) is here enforced by a difference mea-

sure between the texture descriptors associated to each pixel
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Venus Teddy Cones

GlobalGCP 0.489 0.272 0.443

HistoAggr 0.788 0.278 0.434

PPXA+ 0.631 0.330 0.645

CurveletSupWgt 0.831 0.299 0.832

GC+occ 1.166 0.303 0.585

Fig. 3. Comparison of the PPXA+/TSP method with

other techniques on the Middlebury website. The re-

sults are expressed in mean average error (MAE). See

http://vision.middlebury.edu/stereo for the

full list of references.

location p, based on the occurrence of intensity values within

a T × T patch around p, namely:

ωpq = exp

[

−

(

∆cpq

γc
+

‖p− q‖

γp
+

∆Hpq

γh

)]

with (9)

∆Hpq =

B
∑

i=1

|Hp(i)−Hq(i)|. (10)

Here, the Hp vector represents the histogram of intensity val-

ues within the patch around p. To ensure consistency to the

texture descriptors among the various pixels, a fixed number

B of equally spaced bins is determined for each histogram,

always covering the whole intensity range.

This choice is motivated by the fact that, using such statis-

tical descriptors, the sensibility w.r.t. noise and micro-textural

variations occurring on surfaces at the same depth is limited.

Apart from gaining in accuracy on such surfaces, this choice

also allows for the use of (relatively) smaller patch sizes, thus

implying a more accurate weight selection also close to the

edges of the disparity map.

4. EXPERIMENTAL RESULTS

The effectiveness of the proposed modifications has been

proved by testing the different versions of the algorithm on

several grayscale images of the Middlebury database [1].

The initialization u0 is provided by means of a simple

dense block matching algorithm with Normalized Cross Cor-

relation (NCC) similarity measure and 11 × 11 sized blocks.

In all the experiments, the value of the upper bound τ is then

chosen as a fraction αTV (u0) of the TV computed on the ini-

tial estimate: for the classical TV case, α is set to 0.8 while

for all NLTV cases α = 0.65. This difference is due to the

fact that smaller values of τ cause over-smoothing if the TV

constraint is used, while using NLTV makes possible to in-

crease the intensity of the smoothing action. Moreover, for

all the experiments with NLTV, the neighborhoodNp has size

5 × 5, while the patches are 7 × 7 pixels when using both

the weights of Eq. (7) and (10). Finally, h = 35 in Eq. (7),

γc = 5, γp = 2.5 and γh = 5 in both Eq. (8) and (10). All

these parameter values are determined on an heuristic basis,

provided that the algorithm does not show critical instabilities

w.r.t. them. General PPXA+ parameters are set as in [5].

Results for four of the tested images are reported in Fig. 2,

along with the achieved Root Mean Square Error (RMS),

Mean Average Error (MAE) and Bad Pixel (BAD) quality

measures used in the Middlebury dataset [1]. Results on other

images, not reported for brevity, exhibit a similar performance

improvement. To avoid unfair comparisons due to the fact that

no color information is used here, a detailed evaluation will

be provided only w.r.t. the reference technique. For sake of

completeness, a comparison with some state-of-the-art tech-

niques for some of the tested images is shown in Fig. 3, w.r.t.

the MAE figure.

Remarkably, the overall quality of the result is improved

with almost all the NLTV based proposed variants. In particu-

lar, all the techniques using a non uniform weighting strategy

achieve a significant gain, while the only PPXA+/CTV so-

lution seems unable to increase performances, resulting even

worse than the reference technique in one case. Also at a

visual inspection, the increased sharpness of the contours in

the disparity maps is evident. However, as remarked in other

works using NLTV regularization, the results are not immune

from the so-called staircasing effect, exhibiting as the ten-

dency to produce piecewise constant regions, mainly affect-

ing surfaces with a relevant gradient nature like Venus: it is

worth noticing that the BAD indicator is particularly sensi-

ble to this effect, while the MAE and RMS measures, more

affected by over-smoothing errors along the contours, have a

more regular progression and also enhance the performance

assessment w.r.t. other state-of-the-art techniques.

As expected, the PPXA+/TSP solution is providing the

best results in average, proving that the accurate use of vi-

sual appearance to “validate” discontinuities in the disparity

field may be a rewarding choice. Only in one case, for the

Cones stereo pair, the results assess slightly worse than us-

ing PPXA+/SP: this is much probably due to the significant

presence of contours at higher frequencies, around which the

(window-based) texture descriptors may loose reliability.

Clearly, the use of the NLTV based smoothness constraint

generally implies an increase of the computational complex-

ity, proportional to the size of the neighborhood. However,

as highlighted in [5], one of the qualifying points of PPXA+

concerns its parallelization potential: in our case, the compu-

tation of multiple gradients simply extends the degree of task-

parallelization, potentially reducing the impact of the newly

introduced NLTV based constraint on computational time.

5. CONCLUSIONS

In this work, the advantages of Non-Local Total Variation for

the definition of smoothness constraints in the context of dis-

parity estimation have been inspected. With reference to a re-

cently proposed variational technique, a NLTV reformulation

of the discontinuity model is here presented, along with sev-
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Left Image Ground Truth PPXA+/TV PPXA+/CTV PPXA+/PB PPXA+/SP PPXA+/TSP

Teddy MAE/RMS/BAD 0.75/2.03/16.81% 0.75/2.13/16.84% 0.68/1.85/15.92% 0.66/1.81/14.91% 0.63/1.77/14.25%

Venus MAE/RMS/BAD 0.35/0.82/6.16% 0.35/0.82/6.16% 0.40/0.68/7.94% 0.34/0.66/5.61% 0.33/0.65/4.98%

Sawtooth MAE/RMS/BAD 0.50/1.32/6.90% 0.50/1.32/6.90% 0.51/1.31/6.98% 0.46/1.34/6.16% 0.44/1.29/5.98%

Cones MAE/RMS/BAD 0.69/2.13/12.91% 0.69/2.13/12.91% 0.64/2.02/10.81% 0.64/2.02/10.56% 0.64/2.03/10.90%

Fig. 2. Disparity estimation of some images of the Middlebury database. Columns 3 to 7: results using the reference technique

with classical TV constraint (PPXA+/TV), constant weighting (PPXA+/CTV), patch-based weighting (PPXA+/PB), similarity-

proximity based (PPXA+/SP), similarity/proximity based with texture descriptors (PPXA+/TSP).

eral weighting strategies that allow to take advantage of dif-

ferent structural features of the source images. Experimental

results proved this choice rewarding, and motivating further

research to address newly opened issues (staircasing effect)

and optimize the resulting technique for implementation on

parallel architectures.
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