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ABSTRACT

This paper describes a greedy algorithm for audio source sep-

aration of repeated musical patterns. The problem is under-

stood as retrieving from a set of mixtures the part that is re-

dundant among them and the parts that are specific to only one

mixture. The key assumption is the sparsity of all the sources

in the same multiscale dictionary. Synthetic and real life ex-

amples of source separation of hand cut repeated musical pat-

terns are exposed. Results shows that the proposed method

succeeds in simultaneously providing a sparse approximant

of the mixtures and a separation of the sources.

Index Terms— Simultaneous sparse approximation; au-

dio source separation; greedy decompositions

1. INTRODUCTION

There are at least two specific cases of audio source separation

problems where redundancy plays a fundamental role. Com-

mon signal separation is a problem where, from a set of mix-

tures, one tries to recover a source that is shared among all of

them. Practical applications range from film music extraction

[1] to multichannel denoising [2, 3]. Repeating pattern sep-

aration [4], focuses on separating a varying component (e.g.

the singing voice) from a repeating background (e.g. musical

accompaniment).

These two separation problems can be linked because they

share the same underlying source model. A mixture Xi in-

dexed by i, is understood as a combination of an individual

source Pi, specific to the mixture, and a source component

Xc that is shared among all the mixtures (though potentially

distorted in a different manner in each mixture).

In the common signal separation problem, the individual

sources are often considered as noise and the shared com-

ponent is the signal of interest. Redundancy in this case is

the result of a multisensor acquisition [3] or the existence

of multiple versions [1]. In the repeating pattern separation

framework, the shared source is the musical background (e.g
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accompaniment) that remains stable while occurring sev-

eral times in the music and the individual sources are the

parts varying among these occurrences (e.g solo instrument,

singing voice). Redundancy is here the consequence of musi-

cal repetitions.

State of the art methods addressing the problem of Re-

peating pattern separation (e.g the REPET algorithm [4, 5])

are based on element-wise classification of a Time-Frequency

(TF) representation. A TF mask (usually based on the power

spectral density of the mixtures) is constructed for the re-

peating musical background and the separation is performed

by means of Wiener filtering relative to this mask. Often

(e.g in [5]) an assumption is made on the individual sources,

namely that they are sparse in the TF domain. In the same

spirit, in [6], the authors also consider the individual sources

to be sparse while the shared component is captured in a low-

rank approximant of the spectrogram, a matrix factorization

scheme known as Robust PCA [7].

Interestingly, the same sparsity hypothesis is also at the

core of methods addressing the Common signal separation

problem. The basic assumption (e.g in Sparse Component

Analysis (SCA) [8], or in simultaneous approximation prob-

lems [2, 3]) is that the shared component has a sparse expan-

sion in a dictionary Φ of waveforms called atoms.

In this work, we address the Repeating pattern separation

problem using a sparse decomposition of the mixtures in a

redundant dictionary. However, we consider that the shared

source and the individual ones are no different in nature, and

thus may all be sparsely decomposed in the same dictionary.

Section 2 details the problem formulation and the sparse

source models adopted. Section 3 introduces the greedy algo-

rithm proposed in this work. Section 4 presents a comparison

of behavior with TF based methods on synthetic and real-life

examples. Finally Section 5 exposes the proposed separation

scheme as a byproduct of a more general compression system.

2. SIMULTANEOUS APPROXIMATION PROBLEM

Let us formulate the source separation problem as a simul-

taneous approximation paradigm. Indeed, the separation is

obtained from jointly estimating both the shared source and

the individual ones.
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2.1. General formulation

Let us now denoteX ∈ R
I×N the matrix of I mixturesXi ∈

R
N each being of dimensionN , andΦ ∈ R

D×N an overcom-

plete dictionary of D unit-normed waveforms called atoms.

An approximant X̃ of X on Φ is of the form: X̃ = CX · Φ
where CX ∈ R

I×D is sparse, meaning a large part of its

values are zeros. The simultaneous approximation problem

consists in jointly minimizing the divergence between data

and approximant, and the number of non-zero elements. One

formulation is:

min ‖CX‖0 s.t f(X−CX ·Φ) ≤ ǫ (1)

where f is a divergence measure of interest (e.g. a squared

reconstruction error), ‖.‖0 is the l0 pseudo-norm1 and ǫ is a

desired level of precision. Since a strict l0 problem is NP-hard

to solve, a commonly adopted reformulation is a penalized

version:

ĈX = argmin f(X−CX ·Φ) + λ · ‖CX‖p,q (2)

where ‖.‖p,q is a mixed norm2. p and q can be chosen depend-

ing on the desired sparsity and λ is a parameter that controls

the weight of the sparsity constraint. It has been shown [9]

that mixed norms can enforce structured sparsity. Actually,

a column of CX filled with non-zero elements indicates that

the corresponding atom can be found in all the mixtures and

thus belongs to the shared source.

While convex optimization algorithms have been pro-

posed along with structured sparsity priors [8, 9], greedy

methods solving this problem are variants of Simultaneous

Orthogonal Matching Pursuit (SOMP) [2]. This formulation

is adapted when one tries to recover a shared component that

is sparse in the dictionary and implicitly makes the assump-

tions that components from the individual sources will not be

selected. In this context, the separation can be explained as

a denoising of a multichannel signal based on inter-channel

redundancies.

2.2. Distinguishing two different sparsities

In some situations, including music source separation, the

previous formulation is not fully satisfactory. While a sep-

aration of the background is still desirable, the assumption

that the individual sources cannot be sparsely represented

in the same dictionary as the shared one does not hold any

more. Without any knowledge of the sources characteris-

tics or production mechanism (e.g source/filter modeling for

singing voice) there is no reason to consider the shared and

the individual components to be of a different kind.

Actually, it has been shown [10] that most musical sig-

nals are efficiently and sparsely decomposed in Fourier-based

dictionaries (e.g. Gabor frames).

Although the shared source and the individual ones can be

sparsely decomposed in the same Φ, atoms used to represent

1The l0 pseudo-norm ‖X‖0 counts the number of nonzero entries of X.
2See [9] for proper definition

them will exhibit different kinds of sparsity. In a recent paper,

[7] surveillance video frames were modeled as the sum of a

low-rank and a sparse matrix. In a similar fashion, we can de-

composeCX in a sum of two components: CX = BX +PX

where BX is a structured sparse matrix and PX an unstruc-

tured sparse matrix. BX has a small number of columns of

non zero elements. Each column indicates an atom that is

spread among all mixtures. PX on the opposite, contains

at least one zero per column. Its non-zero elements denote

atoms that only belong to a subset of mixtures, hence to a

subset of individual sources.

The interest of such model is obvious for source separa-

tion, the shared source can be modeled as Xc =
∑

BX · Φ
and the individual sources are the rows in the productPX ·Φ.

We can rewrite the problem so as to take this two-sparsities

model into account:

ĈX = argmin f(X−CX ·Φ)+λ · ‖BX‖p,q+γ · ‖PX‖p′,q′

(3)

which allows to put different constraints (by means of λ, p, q

and γ, p′, q′) on the matrices according to the desired spar-

sities for BX and PX. We could have designed a pseudo-

convex optimization algorithm to specifically solve this prob-

lem (in the spirit of the Principal Component Pursuit proposed

in [7]), however these algorithms are computationally inten-

sive and memory consuming. In order to process real scale

audio data, we propose a simple greedy algorithm.

3. JOINTLY ADAPTIVE MATCHING PURSUIT

We propose the use of a fast greedy algorithm of theMatching

Pursuit [11] family to find (potentially suboptimal) solutions

to (3). The separation could be addressed in a post-processing

step, for example by clustering the selected atoms according

to their projections across mixtures. However, we have found

that much better results can be obtained when the separation

process is integrated in the greedy algorithm. This integration

takes the form of two modifications of the basic algorithm.

These changes are: i) the atom selection criterion has been

changed, and ii) after an atom is chosen, a decision mecha-

nism is added, attributing it either to the shared source or to

the (or multiple) individual sources.

3.1. Structure

Amatrix of residuals is initialized from the matrix of mixtures

R
0 = X. The algorithm iteratively builds the two matrices

BX andPX by selecting an atom inΦ according to a criterion

C(Φ,Rn). Then a decision is taken whether to attribute the

selected atom to the shared source or to a subset of individual

sources.
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Algorithm 1 Jointly Adaptive Matching Pursuit (JAMP)

Input: X , Φ

1: R
0 := X , n = 0

2: repeat

3: Step 1 : Select atom φk ← C(Φ,Rn)
4: Step 2 : Decide if φk is background or not

5: if φk is background then

6: ∀i,BX[i, k] = 〈φk, R
n
i 〉

7: else

8: Find which channels J ⊂ I , φk belongs to.

9: ∀j ∈ J,PX[j, k] =
〈
φk, R

n
j

〉

10: end if

11: Step 3 : Update residual :

R
n = X− (BX ·Φ+PX ·Φ)

n← n+ 1
12: until a stopping condition is met

Output: R
n, BX and PX

3.2. STEP 1 : Atom Selection

For the sake of clarity, we denote rni (φ) the squared absolute
value of the projection of an atom φ onto Rn

i , the residual of

the i-th mixture at the n-th iteration: i.e rni (φ) = |〈R
n
i , φ〉|

2.

Four criteria have been investigated in this work:

CS(Φ,Rn) = argmax
φ∈Φ

I−1∑

i=0

rni (φ)

CM (Φ,Rn) = argmax
φ∈Φ

min
i

rni (φ)

CW (Φ,Rn) = argmax
φ∈Φ

w(φ,Rn) ·

I−1∑

i=0

rni (φ)

CP (Φ,Rn) = argmax
φ∈Φ

I−1∑

i=0

rni (φ) +
∑

i6=j

|rni (φ) − rnj (φ)|

CS is simply an energetic criterion, it does not influence the

choice of an atom from the background or the foreground.

CM is a criterion that minimizes the risk of selecting an atom

not belonging to the background. CW is a weighted variant,

the weight being defined by the spectral flatness of the distri-

bution of the atom projections on the I residuals. This flat-

ness is the ratio of the geometric mean over the arithmetic

mean. This criterion penalizes the selection of an atom if it

does not belong to the background. Finally CP encourages

the selection of atom from the individual sources by adding

the inter-channel atom projection differences to the plain en-

ergetic criterion.

3.3. STEP 2 : Separating the sources

The decision making obviously depends on the chosen crite-

rion. Using CM , no atoms from the individual sources should

be selected (at least until the background has been approx-

imated to a good precision), thus no specific mechanism is

required. Using any other criterion, on the other hand, forces

us to add an additional step.

Background Foreground

SDR SIR SDR SIR

CS 6.0 (1.4) 35.8 (8.6) 6.2 (1.5) 17.6 (4.6)

CM 1.2 (0.9) 16.9 (6.4) 1.2 (1.6) 2.8 (2.0)

CW 6.0 (1.4) 34.2 (7.7) 6.6 (1.8) 17.3 (4.8)

CP 7.8 (1.8) 35.0 (6.3) 7.1 (1.7) 20.4 (5.5)

Table 1. Separation scores (mean and std) after 1000 itera-

tions of JAMP with various selection criteria

Let φk be the chosen atom, the distribution of the rni (φk)
is informative. If φk is efficient in representing the back-

ground, then this distribution will be flat (e.g. the rni (φk) have
small empirical variance). On the opposite, if there are great

disparities in the values of rni (φk), then one can assume that

φk should not be assigned to the background, but to a subset

(potentially only one) of the individual sources.

Any statistical measure of the dispersion of the rni (φk)
values can thus be used. In this work we have used a simple

relative standard deviation D = σ
µ
. This value is low when

the dispersion is weak, thus a threshold τ can be defined so

as to make a decision on the atom appertaining to the back-

ground or the individual sources. In this work, we have set

τ = 0.5 and have not tried to optimize this parameter.

4. EXPERIMENTS

4.1. Comparing Selection criteria

To evaluate separation performances of the various selection

criteria we have designed the following experiment. 4 short

audio excerpt (5 seconds) were used to create 12 sets of 3

mixtures. For each set, one of the excerpts is used as the back-

ground source and is present in all the mixtures without dis-

tortion. Three different Individual-to-Shared source energy

ratios were used, namely 5, 0 and -5 dB, so that a variety

of mixing situations are tested. Performance is assessed by

means of the widely adopted measures presented in [12]. Ta-

ble 1 gives the results in terms of Sources-to-distortion ratio

(SDR) and Sources-to-Interferences ratio (SIR).

The CM criteria is used without any decision mechanism,

the foreground sources are being estimated directly from the

residual since only atoms from the background should be se-

lected by the algorithm. We can see that this method gives

substantially lower results. Interestingly the best technique

appears to be using CP .

4.2. Comparing with Time-Frequency based Techniques

In [5], the authors have presented a simple separation tech-

nique based on an estimation of a Time-Frequency mask for

the background source as the median (respectively the min-

imum) of the mixture spectrogram. We have implemented

this method, labeled REPET-Median (resp. REPET-Min) and
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Fig. 2. BSS eval mean score for synthetic examples. Com-

paring TF masking technique from [5] with Joint Matching

Pursuit with criterion Penalized for various offsets in back-

ground alignments

compared it to our own. Since JAMP is iterative, we can fol-

low the evolution of the separation scores through the decom-

position process. Figure 1 presents such results for analyz-

ing mean performances on the same set of signals as above.

JAMP with a CP selection criterion can reach the same SDR

level than REPET-Median in about 10000 iterations. In aver-

age, REPET-Min gives better SDR results, however the mean

SIR values are much better using JAMP.

Additionally, the JAMP algorithm is designed to be more

robust to the backgrounds being offset in the mixtures. Actu-

ally, a local optimization of atoms time localization for each

mixture is performed. It effectively manages to reduce pre-

echo artifacts [10]. Figure 2 presents the results of an ex-

periment in which the background sources are offset in each

mixture. Performances of the REPET-Min algorithm drops

quite sharply for offsets of about 15ms, while they remain

quite unchanged until 150ms for JAMP.

4.3. Real audio data

The real difficulty arises when the background is not perfectly

identical (e.g when considering a repeated musical pattern).

The experiment here consists of separating the singing voice

from a repeated musical background. Due to variation in the

execution, the background is not exactly the same nor per-

fectly aligned since tempo variation can occur, which makes
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Fig. 3. Mean normalized reconstruction error for various cri-

teria. The criteria CP that maximizes the separation perfor-

mances is also the one that minimizes the reconstruction er-

ror.

it a difficult task.

As in [5], we use audio material from the Beach Boys.

We have cut musical excerpts in 5 songs by hand and con-

stituted 5 sets of 4 mixtures. In each set, all the mixtures

are occurrences of the same repeated pattern (usually from

the verse) and last a few seconds (from 3 to 6). We have

compared the results of the JAMP algorithm (run for 10000

iterations) with REPET using the min and median methods.

We have also compared performances when using only I = 3
occurrences for the separation. Results are summarized in

Table 2. Performances are quite comparable with a slight ad-

vantage to JAMP on the singing voice SDRs and SARs. For

the background, REPET-Min gives the best scores except for

SIRs where JAMP is clearly ahead.

These results are encouraging. While using a single

generic dictionary, JAMP manages to sparsely decompose

both the shared source and the individual components. Per-

ceptively though, JAMP creates ringing artifacts, but those

could be reduced (e.g. by pre-echo control methods [10]).

Increasing the number of iteration leads to an increase of all

JAMP scores but the Musical Background SIRs.

5. BEYOND SOURCE SEPARATION

The simultaneous approximation problem (i.e. finding good

joint approximations of the signals) appears disjoint from

the source separation problem addressed above. Actually,

the global reconstruction error is not intuitively linked to the

source separation performances.

With the synthetic dataset described in 4.2, we have found

that the criteria CP gave the best separation performances.

Figure 3 shows that it is also the one that minimizes the re-

construction error ǫ:

ǫ = 10 log

(
‖X−CXΦ‖2F
‖X‖2F

)

where ‖.‖2F is the squared Frobenius matrix norm or the sum

of the squares of the entries in the matrix. This comes as a

surprise since source separation and error minimization could

2647



3 Versions 4 Versions

Method SDR (dB) SIR (dB) SAR (dB) SDR (dB) SIR (dB) SAR (dB)

Musical Background

REPET-Min 3.16 ± 1.7 3.41 ± 5.8 10.03± 1.9 3.47 ± 1.2 3.29 ± 4.7 11.23± 2.0

REPET-Med 2.49 ± 0.6 8.08 ± 6.4 3.28 ± 1.5 2.62 ± 0.7 7.61 ± 6.3 4.23 ± 1.6

JAMP - CP 1.96 ± 0.6 19.14± 7.2 -0.87 ± 2.2 2.06 ± 0.6 17.42± 6.0 -0.60± 2.3

Singing Voice

REPET-Min 1.67 ± 0.9 9.96 ± 3.2 0.25 ± 3.0 1.39 ± 0.7 11.17± 3.1 -0.55± 2.4

REPET-Med 2.91 ± 0.6 5.47 ± 2.7 4.71 ± 1.8 2.92 ± 0.4 5.40 ± 2.2 4.96 ± 1.5

JAMP - CP 3.62 ± 0.8 5.94 ± 2.5 5.21 ± 1.8 3.48 ± 1.0 6.03 ± 2.5 4.79 ± 2.3

Table 2. Separation scores on repeating musical segments from the Beach Boys. JAMP stopped after 10000 iterations

have been antagonistic optimization goals. The fact that the

proposed method optimizes both objectives opens interesting

perspectives. Minimizing ǫ is a desirable property in a com-

pression context, hence, this work could be embedded in a

broader distributed source coding scheme. Recent work on

distributed compressive sampling [13] support this prospec-

tive. The source separation would then be a nice additional

feature of the compression.

6. CONCLUSION

The joint modeling of the shared source and the individ-

ual ones accounts to modeling the redundant and the non-

redundant parts of the signal. Although further theoretical

studies must be conducted on the matter, it is worth noticing

that efficiently separating those parts enables the compres-

sion of the redundant parts, but also succeed in minimizing

a global reconstruction error on the original mixtures. For

musical signals, one cannot always make the assumption that

those parts have sparse expansions on different dictionaries.

The proposed method overcomes this limitation. JAMP is a

simple, fast pursuit algorithm. Hence, it provides an interest-

ing alternative to existing methods in the context of musical

repeated pattern separation. Artifacts reduction should be the

next matter of concern, and future work will try to embed the

model on a broader signal structuration scheme.
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