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ABSTRACT

In this paper we study the analog transmission of discrete-
time continuous-amplitude sources over MIMO Rayleigh fad-
ing channels at extremely high data rates. Linear and De-
cision Feedback MMSE MIMO receivers are used to trans-
form the MIMO channel into several SISO channels. We as-
sume the presence of a limited feedback channel that allows
continuous adaptation of the encoder parameters to the time-
varying channel SNR. Experimental results show that the de-
cision feedback MIMO receiver performs at 2 dB from the
theoretical bound when transmitting Gaussian sources.

1. INTRODUCTION

It is well known that the use of separate source and chan-
nel coders is optimal for digital communications [1] in many
channel models such as the Additive White Gaussian Noise
(AWGN) channel. The complexity of those systems, how-
ever, can be very high when they are designed to perform
close to the Shannon limit. Also, they add significant delays
motivated by the long block lengths required to approach the
theoretical limits. Moreover, full redesign of the digital sys-
tem is necessary whenever we want to change the code rate
or the distortion target.

It is also well known that analog communications are
optimal under some circumstances. For instance, direct trans-
mission of uncoded Gaussian samples over AWGN channels
is optimal because Gaussian sources are perfectly matched
to Gaussian channels. Thus, it is very interesting to consider
analog transmission of discrete-time continuous-amplitude
sources when possible. This fact has recently motivated sev-
eral work [2–5] on finding analog transformations aimed at
matching sources with channels. These schemes can perform
analog compression at the symbol level and thus no delays
are introduced. They also present a very low complexity,
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making them very attractive for the effective transmission of
analog sources such as images and sound.

In the literature, most work on analog joint source chan-
nel coding focuses on AWGN channels. An exception is [6],
which considers a two-user single-antenna scenario under a
flat fading Rayleigh channel. Another exception is [7] where
the implementation on a Software Defined Radio testbed of
a wireless system based on joint analog source channel cod-
ing is presented. Excellent performance over wireless chan-
nels is attained when the encoder parameters are continuously
adapted to the time-varying Channel Signal to Noise Ratio
(CSNR).

In this work, we study the feasibility of analog com-
munications over Multiple Input Multiple Output (MIMO)
Rayleigh fading channels. Optimum Maximum Likelihood
(ML) decoding of the vector observations is difficult due to
the non-linear characteristic of the analog encoding proce-
dure. We circumvent this drawback by considering subop-
timal linear and decision feedback receivers that transform
the MIMO channel into several Single Input Single Output
(SISO) channels. Feeding back the CSNR information of
the equivalent SISO channels allows us to adapt the encoder
parameters to the channel time-variations and attain a perfor-
mance close to the theoretical bounds.

The rest of this paper is organized as follows. Section 2
describes the basic principles of analog joint source channel
coding and its optimization over SISO channels. Section 3
focuses on analog joint source channel coding over Rayleigh
fading MIMO channels. Section 4 presents performance re-
sults for different MIMO channels and source distributions
while Section 5 is devoted to the conclusions.

2. ANALOG JOINT SOURCE-CHANNEL CODING IN
SISO CHANNELS

Let us consider the analog transmission of discrete-time
continuous-amplitude sources over wireless channels. In this
section we focus on SISO Rayleigh fading channels while the
MIMO case will be considered in the ensuing section.

Figure 1 shows the block diagram of an N :1 analog joint
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Fig. 1. System model for the N :1 bandwidth compression
scheme under AWGN channels.

source-channel coding system over a Rayleigh fading chan-
nel where N independent and identically-distributed (i.i.d.)
source symbols are compressed into one channel symbol.
Analog source symbols are packed into the source vectors
X = {xi}Ni=1. The encoding procedure has two steps: the
compression functionMδ(·) and the matching function Tα(·).
For the compression function Mδ(·), a particular type of
parameterized space-filling continuous curves, called spiral-
like curves, are used to encode the samples. These curves
were proposed for the transmission of Gaussian sources over
AWGN channels by Chung and Ramstad [2–4]. For the case
of 2:1 compression (i.e. N = 2), they are formally defined as

(1)


x1 = sign(θ)

δ

π
θ sin θ

x2 =
δ

π
θ cos θ for θ ∈ <,

where δ is the distance between two neighboring spiral arms,
and θ is the angle from the origin to the pointX = (x1, x2) on
the curve. Therefore, each pair of analog samples, x1 and x2,
represent a specific point in <2 that is matched to the closest
point on the spiral. The angle from the origin to that point on
the spiral, θ̂, will be the channel symbol for x1 and x2, i.e.

θ̂ = Mδ(X)

= arg min
θ

{(
x1 ±

δ

π
θ sin θ

)2

+

(
x2 −

δ

π
θ cos θ

)2
}
.

(2)

It is possible to achieve higher compression rates (i.e. N > 2)
by extending (1) to generate more complex curves [8, 9].

Next, we use the invertible function Tα(·) to transform
the compressed samples. In [2, 4, 10], the invertible func-
tion Tα(θ̂) = θ̂α, with α = 2 was proposed. However, as
shown in [5], the system performance can be improved if α
is optimized together with θ. We have determined that using
α = 1.3 provides a good overall performance, whereas us-
ing different values of α for each CSNR does not improve the
SDR significantly. The channel symbol, s, is thus constructed
as s = Tα(θ̂)/

√
γ where

√
γ is a normalization factor such

that the average transmitted power is equal to one. The re-
ceived observation, y, can be expressed as y = hs+ n where
h is the Rayleigh fading channel response and n is the noise

at reception. Both are modeled as complex-valued zero-mean
circularly-symmetric Gaussian random variables. The Chan-
nel Signal to Noise Ratio (CSNR) is |h|2/N0 and changes
with each channel realization. Normalizing the fading chan-
nel, σ2

h = E[|h|2] = 1, yields an average CSNR equal to
1/N0.

At the receiver, Maximum Likelihood (ML) decoding is
used to obtain an estimation of the source symbols. Given
an observation, y, the ML estimate is obtained as the tuple
X̂ = (x̂1, x̂2) belonging to the curve and satisfying

X̂ = arg max
X∈curve

p(y|X)

= {X|X ∈ curve and Tα(Mδ(X)) = y}. (3)

Thus, ML decoding is equivalent to first applying the inverse
function T−1α to the observation, y, i.e.

θ̂′ = T−1α (y) = sign(y)|y|−α (4)

and then mapping θ̂′ to X̂ = (x̂1, x̂2) according to the em-
ployed curve function.

System performance is measured in terms of the Signal to
Distortion Ratio (SDR) with respect to the CSNR. The distor-
tion is the Mean Squared Error (MSE) between the decoded
and source analog symbols, i.e. MSE = E{‖X − X̂‖2}/N .
Thus, assuming that the source signal has unit power, the SDR
is calculated as SDR = 10 log (1/MSE).

Since our goal is the minimization of the SDR, the bi-
dimensional space has to be filled by the spiral in the best
possible way for every CSNR value. By changing the value
of the curve parameter δ according to the CSNR, it is possi-
ble to optimize this matching and to improve the system per-
formance. When considering ML decoding, high CSNR and
α = 2, it is possible to obtain an analytic expression for the
optimal value of δ [10]. When α 6= 2, however, analytical op-
timization of δ is not feasible. Instead, δ can be numerically
optimized by computing the SDR for each CSNR over a wide
range of values for δ. Table 1 shows the best values of δ that
were found via computer simulations for different values of
the CSNR for a 2:1 compression ratio.

The proposed analog system can be readily modified to
consider more general compression rates N :K, by simply
transmitting some of the samples uncoded and the rest coded
with N :1 compression as explained in [5].

3. ANALOG JOINT SOURCE-CHANNEL CODING IN
MIMO CHANNELS

In this section we focus on the analog transmission of
discrete-time continuous-amplitude sources over MIMO
wireless channels. We assume the source symbols are spa-
tially multiplexed over nT transmit antennas. At each trans-
mit antenna, a vector Xi of N analog source symbols is
encoded into the channel symbol si, i = 1, . . . , nT using an

1385



Table 1. Optimal values for δ.
CSNR (dB) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

δ 9.8 8.0 5.6 5.0 4.2 4.0 3.9 3.7 3.6 3.4 3.2 3.1 3.0 2.9 2.7 2.5 2.3 2.2 2.1 2.0

CSNR (dB) 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
δ 1.8 1.7 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.8 0.8 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4

N :1 analog encoder such as the one described in the previous
section. Channel symbols are transmitted over a frequency
flat MIMO channel with nR ≥ nT antennas. The observed
symbols at the MIMO channel output are given by

y = Hs + n

where s, y and n are the vectors that represent the channel
symbols, the received symbols and the spatially white addi-
tive Gaussian noise, respectively. H is the nR × nT MIMO
channel matrix. We assume a spatially white Rayleigh fading
MIMO channel whose coefficients hij are complex-valued
zero-mean circularly-symmetric Gaussian i.i.d. random vari-
ables. Channel symbols are normalized so that the radiated
power at each antenna is 1/nT (i.e. total radiated power is
one). This way, the MIMO CSNR is

CSNR(H) =
Tr{HHH}
nTnRN0

where Tr{·} denotes the trace operator and the superindex
H represents conjugate transposition. If MIMO channels are
normalized so that EH

[
Tr{HHH}

]
= nTnR, the average

CSNR is 1/N0

The optimum MIMO receiver calculates the Maximum
Likelihood (ML) estimate of the source symbols X =
{Xi}nT

i=1 from the observations, i.e.

X̂ = arg max
X

p(y|X ) (5)

where p(y|X ) is the likelihood of X with respect to y. How-
ever, given the non-linear characteristic of the analog chan-
nel encoder, an analytical solution to (5) is extremely diffi-
cult. Instead, in this work we focus on two suboptimal MIMO
receivers that equalize the MIMO channel: Minimum Mean
Squared Error (MMSE) linear receiver and MMSE Decision
Feedback (DF) with ordering non-linear receiver.

Figure 2 shows the block diagram of an analog MIMO
transmission system with an MMSE linear receiver. The
MMSE filter that minimizes the Mean Squared Error be-
tween the channel symbol vector s and the estimated symbol
vector ŝ = Wy is given by

WMMSE =
(
HHH + nTN0InT

)−1
HH (6)

Notice that WMMSE does not completely cancel the spatial
interference, i.e. at ŝi the desired symbol si is corrupted by
a residual spatial interference that adds to the Gaussian noise.

Fig. 2. Analog MIMO system with MMSE detection.

Fig. 3. Analog MIMO system with DF detection.

It is shown in [11] that the equivalent CSNR at each output of
the MMSE linear receiver can be expressed as

CSNRi =
µ2
i

µi − µ2
i

=
µi

1− µi
, i = 1, . . . , nT (7)

where µi = (WMMSEH)ii. It is assumed that our system
setup provides a feedback channel that enables us to send
these CSNRi values to the transmitter (see Figure 2). This
way we can implement an adaptive coded scheme where the
δ parameter of each analog joint source-channel encoder is
continuously updated following Table 1.

Figure 3 plots the block diagram of an analog MIMO
transmission system with a DF receiver. Both the Feed For-
ward (FF) and the Feed Backward (FB) filters are optimized
according to the MMSE criterion. The FF filter is obtained
from the Cholesky factorization of

HHH + nTN0InT
= LH∆L

where L is an nT × nT lower triangular matrix and ∆ is a
nT × nT diagonal matrix. If we define the whitening filter as
BH = ∆−1L−H , the FF filter is the product of the matched
and whitening filters, i.e. WDF

MMSE = BHHH . The overall
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response of the FF filter and the channel is

WDF
MMSEH = L− nTN0∆

−1L−H (8)

In order to simplify the derivation of the DF receiver, we will
assume that there are no decoding errors. Under this assump-
tion, the spatially causal component of the interference in (8)
can be successively removed with the FB filter L− InT

with-
out altering the noise statistics at the decoder inputs. An ad-
vantage of analog coding is that there is no delay in the en-
coding and re-encoding steps which significantly simplifies
the implementation of DF MIMO receivers.

Similarly to the case of linear receivers, we assume the
instantaneous CSNR at the decoder inputs is known at the
transmitter thanks to the presence of a limited feedback chan-
nel (see Figure 3). This allows the continuous update of the
δ parameter following Table 1. Equation (7) is also valid to
calculate the CSNR value with

µi =
(
BHHHH− L + InT

)
ii

=
(
InT
− nTN0∆

−1L−H
)
ii

(9)

Finally, notice that decoding ordering is important in the
performance of DF MIMO receivers [12]. Ordering can be in-
terpreted as a permutation of the columns of the MIMO chan-
nel matrix, i.e. H̄ = HP where P is a permutation matrix.
Contrarily to [12], the optimum ordering in our case is the one
that minimizes the MMSE at the decoder input, i.e.

MMSE = N0Tr
{
∆−1

(
InT
−N0L

−HL−1∆−1
)}

≈ N0Tr
{
∆−1

}
(10)

where the approximation holds when N0 << 1. Thus, the
optimum ordering is

Popt = arg min
P

N0Tr
{
∆̄−1

}
(11)

where ∆̄ results from the Cholesky factorization of H̄HH̄ +
nTN0InT

. This optimization problem can be readily solved
by searching over the nT ! possible permutation matrices and
selecting the one that minimizes the MMSE cost function
(10).

4. SIMULATION RESULTS

Computer simulations were carried out to illustrate the per-
formance of the proposed analog MIMO transmission meth-
ods. We considered two types of source distributions: Gaus-
sian and Laplacian. These distributions are typically encoun-
tered in practical applications such as image transmission or
Compressive Sensing. The theoretical bound is the minimum
attainable SDR for a given CSNR and is known in the liter-
ature as the Optimum Performance Theoretically Attainable
(OPTA) [13]. The OPTA is calculated by equating the rate
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Fig. 4. OPTA and SDR in MIMO 2x2 and Gaussian sources.
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Fig. 5. OPTA and SDR in MIMO 4x4 and Gaussian sources.

distortion function, which determines the minimum number
of bits that must be employed to encode a source in order to at-
tain a certain distortion, to the channel capacity, that specifies
the maximum number of bits that can be transmitted through
the channel without errors for a given CSNR. For a generic
N :K system, this results in

log

(
C

MSE

)
=

N

Knt
EH

{
log det

(
InR

+
CSNR
nT

HHH

)}
(12)

where EH{·} represents expectation with respect to H and the
constant C in the rate distortion function takes values C = 1
for Gaussian sources and C = e/π for Laplacian sources.

We consider symmetric MIMO channels with nT =
nR = 2 and 4 transmit and receive antennas. The source
symbols are encoded using the rate 2:1 analog code described
in Section 2. Then, the analog coded symbols are normalized
and transmitted over a spatially white flat Rayleigh fading
MIMO channel. At the receiver, either the linear MMSE or
the DF MMSE MIMO receivers described in the previous
section are employed. In both cases ML decoding of the
analog symbols is used.

Figures 4 and 5 show the achieved SDR for different val-
ues of average CSNR for 2 and 4 transmit and receive anten-
nas, respectively. Source symbols are assumed to be Gaussian
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Fig. 6. OPTA and SDR in MIMO 2x2 and Laplacian sources.
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Fig. 7. OPTA and SDR in MIMO 4x4 and Laplacian sources.

distributed. The performance of the two considered MIMO
receivers, linear MMSE and DF MMSE, are compared to the
OPTA. It is apparent from these figures the excellent perfor-
mance of the proposed analog coding techniques. Indeed,
the SDR obtained with the DF MMSE MIMO receiver stays
within 2 dB from the OPTA in all cases. The performance
of the MIMO linear MMSE receiver is slightly worse than
that of DF receivers, although differences increase with the
number of antennas. Notice that the superior performance of
DF MIMO receivers is due to the non-linear decoding and re-
encoding operations carried out during the decision feedback
stage.

Figures 6 and 7 show simulation results for the same an-
tenna configurations when the source follows a Laplacian dis-
tribution. In this case, the performance of DF MMSE MIMO
receivers is not as close to the OPTA as when the source is
Gaussian, but stays within 3 dB from the theoretical limits.
Again, the performance of linear MMSE receivers is worse
than that of DF receivers and the degradation increases with
the number of antennas.

5. CONCLUSIONS

In this work we have investigated the analog transmission
of discrete-time continuous-amplitude sources over MIMO

Rayleigh fading channels at extremely high data rates. Source
symbols are spatially multiplexed over nT transmit antennas
and two different types of MIMO receivers have been consid-
ered: linear MMSE and DF MMSE. Simulation results show
the excellent performance of the DF MMSE MIMO receiver
which attains a SDR that is only 2 dB under the OPTA bound
when the sources are Gaussian and slightly worse for Lapla-
cian sources.
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