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Université de technologie de Troyes

10010 Troyes, France

Cédric Richard

Laboratoire H. Fizeau (CNRS)
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ABSTRACT

In this paper, we investigate a novel online one-class clas-
sification method. We consider a least-squares optimization
problem, where the model complexity is controlled by the co-
herence criterion as a sparsification rule. This criterion is cou-
pled with a simple updating rule for online learning, which
yields a low computational demanding algorithm. Experi-
ments conducted on time series illustrate the relevance of our
approach to existing methods.

Index Terms— support vector machines, kernel methods,
one-class classification, online learning, coherence parameter

1. INTRODUCTION

One-class classification for novelty detection has recently
generated a great interest in the machine learning commu-
nity. When time series are considered, an adaptive scheme is
required for online detection. In an online learning scenario,
training data are available one sample at a time, as opposed
to the batch mode where all the samples are presented to the
system at the same time. An online learning is also advanta-
geous when dealing with very large datasets. Several applica-
tions of interest in signal processing include audio and speech
segmentation [1] and wireless sensor networks [2].

Several methods have been developed to solve the one-
class problem, the most widely studied being the one-class
support vector machines (SVM) [3]. It determines a sphere
of minimum volume that encloses all (or most of) the avail-
able data, by estimating its center and radius. One-class SVM
takes advantage of many properties from SVM literature, such
as the nonlinear extension by using kernel functions and the
sparseness of the center. The sparsity property states that the
center of the sphere explores only a small fraction of the train-
ing samples, known as support vectors (SVs). Quadratic pro-
gramming techniques are often applied to solve this problem.
Such approach is inappropriate for online learning.

Many online learning methods have been proposed for
SVM in binary classification problems; see for instance [4, 5]
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and references therein. So far, there are few attempts to estab-
lish online versions of the one-class SVM. In [6], it is argued
that the binary classification algorithm in [5] cannot be di-
rectly implemented for the one-class problem. In [7], a modi-
fied formulation of the one-class SVM is presented, following
[8] where an exponential window is applied to the data. Still,
this technique is based on the slow-varying assumption, and
several approximations were applied. In another approach, a
novelty detection test can also be defined by comparing two
one-class SVMs, one trained on the sliding window before
the present instance, and one on the sliding window after it.
A similar approach is considered in [2] with an application on
wireless sensor networks. Nevertheless, this approach is not
an online one-class technique.

In order to derive an online version of the one-class SVM
machines, the main difficulty remains in the nature of the con-
strained quadratic optimization problem. Inspired from the
least-squares SVM, a one-class technique is proposed in [9].
However, as pointed out by the authors, it does not have a
decision function, and moreover, it loses the sparseness, thus
inappropriate for online detection. In this paper, we revisit
the one-class problem by considering a least-squares estima-
tion of the center of the sphere. The sparsity of the solution is
controlled online by the coherence parameter, borrowed from
the literature on sparse approximation problems with dictio-
naries [10]. The coherence parameter designates the greatest
correlation between elements of a dictionary (or two dictio-
naries) [11, 12]. In signal processing, the quality of repre-
senting a signal using a dictionary is studied in [13], while in
[14] the authors use the coherence parameter for signal pro-
cessing in multichannel transmissions and for source separa-
tion problems. More recently, we have adapted the coherence
parameter to a dictionary of kernel functions, and applied it
with success for online prediction of time series data with
kernel functions [15, 16]. The coherence criterion provides
an elegant model reduction criterion with a less computation-
ally demanding procedure. In this paper, we associate this
criterion with a one-class classification algorithm by solving
a least-squares optimization problem.

The rest of the paper is organized as follows. Section 2
outlines the one-class SVM. We present our approach in Sec-

20th European Signal Processing Conference (EUSIPCO 2012) Bucharest, Romania, August 27 - 31, 2012

© EURASIP, 2012  -  ISSN 2076-1465 664



tion 3. Algorithms for offline and online learning are de-
scribed in Section 4. Section 5 provides an experimental
study on time series.

2. ONE-CLASS SVM

Let x1, . . . ,xn be the set of training samples, et Φ(·) be
a nonlinear transformation defined by the use of a kernel,
κ(xi,xj) = 〈Φ(xi),Φ(xj)〉, such as the Gaussian kernel
κ(xi,xj) = exp(−‖xi − xj‖2/2σ2) where σ is the band-
width parameter. The one-class SVM1 finds a sphere, of min-
imum volume, containing most of the samples. This sphere,
described by its center c and its radius r, is obtained by solv-
ing the constrained optimization problem:

min
r,c,ζ

r2 +
1

νn

n
∑

i=1

ζi

subject to ‖Φ(xi)− c‖2 ≤ r2 + ζi for all i

In this expression, ν is a positive parameter that specifies the
tradeoff between the sphere volume and the number of out-
liers, i.e., samples lying outside the sphere. By introducing
the KKT optimality conditions, we get c =

∑n
i=1 αiΦ(xi),

where the αi’s are the solution to the optimization problem:

max
α

n
∑

i=1

αiκ(xi,xi)−
n
∑

i,j=1

αiαjκ(xi,xj)

subject to

n
∑

i=1

αi = 1 and 0 ≤ αi ≤
1

νn
for all i (1)

It is well known that only a small fraction of the training sam-
ples contributes to the above model. These samples, called
support vectors (SVs), have non-zero αi’s.

In order to provide an online algorithm for one-class
SVM, the main difficulty remains in the constrained optimiza-
tion problem. For instance, upon arrival of a new sample, the
coefficients αi’s should be updated subject to constraints (1).
However, the upper bound on the αi’s depends on n, thus
should be updated and accordingly the values of these coef-
ficients. This problem is studied in [6], where 6 conditions
are considered. This increases the computational complex-
ity, which depends on the stability of the solution when new
samples are added.

1There exists another formulation of the one-class classification problem:
Let w defines the hyperplane separating the origin from the projections of
the samples, in the feature space, then the optimization problem is

min
r,w,ζ

‖w‖2 +
1

νn

n
∑

i=1

ζi + r subject to 〈w,Φ(xi)〉 ≥ r − ζi for all i

with the decision function given by 〈w,Φ(xn)〉. The equivalence between
both formulations, i.e., between w and c, is studied in [3].

3. PROPOSED ONE-CLASS APPROACH

Consider the estimation of the center from n available sam-
ples, namely

cn =
1

n

n
∑

i=1

Φ(xi). (2)

Then, any new sample x that satisfies ‖Φ(x) − cn‖ > r can
be considered as an outlier, where the distance is

‖Φ(x)−cn‖
2 =

1

n2

n
∑

i,j=1

κ(xi,xj)−
2

n

n
∑

i=1

κ(xi,x)+κ(x,x).

This formulation is inappropriate for large scale data, and un-
suitable for online learning as n grows infinitely. The use of
a sparse solution for the center provides a robust formulation,
appropriate for simple online and offline learning algorithms.

Let cI denotes a sparse model of the center cn by using a
small subset of the available samples with

cI =
∑

i∈I

αiΦ(xi), (3)

where I ⊂ {1, 2, . . . , n}, and let |I| denotes the cardinality
of this subset. The distance of any Φ(x) to cI is

‖Φ(x)−c‖2=
∑

i,j∈I

αiαjκ(xi,xj)−2
∑

i∈I

αiκ(xi,x)+κ(x,x).

(4)
The optimization problem consists of properly identifying
this subset and estimating the optimal coefficients αi’s. A
joint optimization procedure requires advances techniques, as
illustrated above with the one-class SVM. In this paper, we
propose a separate optimization scheme:

Step 1 Select the most relevant samples in the expansion (3),
by using the “coherence” as a sparsification criterion.

Step 2 Estimate the optimal coefficients αi’s, in the sense of
the least-squares sense, namely minα ‖cn − cI‖2.

Next, we propose two different settings, an offline and an on-
line scheme, and derive appropriate learning algorithms.

4. OFFLINE AND ONLINE ONE-CLASS METHODS

4.1. Coherence parameter

The coherence is a fundamental quantity for characterizing
dictionaries in sparse approximation problems [10]. It desig-
nates the greatest correlation between the elements of a dic-
tionary. For a dictionary of unit-norm2 elements, {Φ(xi) | i ∈
I}, the coherence parameter is defined by [16]

µ = max
i,j∈I

i"=j

|〈Φ(xi),Φ(xj)〉| = max
i,j∈I

i"=j

|κ(xi,xj)|. (5)

2A unit-norm element satisfies ‖Φ(x)‖ = 1 for every x, namely
κ(x,x) = 1; otherwise, substitute κ(xi,xj)/

√

κ(xi,xi)κ(xj ,xj) for
κ(xi,xj) in the expression of the coherence parameter.
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This parameter corresponds to the largest absolute value of
the off-diagonal entries in the Gram (kernel) matrix, i.e., ma-
trix with entries κ(xi,xj) for i, j ∈ I. We say that the dic-
tionary is µ-coherent. Accordingly, an orthonormal basis is
0-coherent, while dictionaries with at least two identical ele-
ments are 1-coherent.

In an offline learning scheme, we consider the subset with
the least coherence, the number of elements being fixed in
advance. One can for instance consider the Gram matrix of
all entries, followed by a pruning procedure by removing the
entries with the largest off-diagonal values.

4.2. Optimal parameters

Once the elements of the expression (3) identified, we esti-
mate the optimal coefficients αi’s for i ∈ I. Let α be the
column vector of these coefficients. We consider the mini-
mization of the approximation error ‖cn − cI‖, namely

α = argmin
αi

i∈I

∥

∥

∥

1

n

n
∑

i=1

Φ(xi)−
∑

i∈I

αiΦ(xi)
∥

∥

∥

2

.

By taking the derivative with respect to each αk, and setting
it to zero, we obtain

1

n

n
∑

i=1

κ(xk,xi) =
∑

i∈I

αi κ(xk,xi), for each k ∈ I.

Written in matrix form, we get Kα = κ, where K is the
Gram (kernel) matrix with entries κ(xi,xj) for i, j ∈ I andκ
is the column vector with entries 1

n

∑n
i=1

κ(xk,xi) for each
k ∈ I. The final solution is given by

α = K
−1

κ. (6)

This problem is well-posed3, since the Gram matrixK is non-
singular. In fact, for a µ-coherent dictionary of |I| elements,
the eigenvalues of its Gram matrix are greater than or equal to
1− (|I| − 1)µ. This property was previously derived by two
of the authors of this paper [15, Proposition 1].

4.3. Online Coherence Criterion

In an online learning scheme, we have a new sample at each
time step. The sparsification rule determines whether, at time
step n+ 1, the candidate Φ(xn+1) can be well approximated
by a combination of the elements of the dictionary. If not, it
is added to the dictionary. The coherence-based sparsification
criterion consists of inserting Φ(xn+1) in the dictionary pro-
vided that its coherence remains below a given threshold µ0,
namely

max
i∈I

|κ(xi,xn+1)| ≤ µ0. (7)

3The well-posedness of our approach show its relevance to other methods
that are numerically unstable such as [6, See Section 2.4].
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Fig. 1. The online method applied on the “frame” distribution.
Samples are given in dots ·, and elements of the dictionary are
shown with circles ◦. The contour is given by the distance to
the estimated center.

The value of the parameter µ0 ∈ [0, 1[ determines the level of
sparsity. In [16, Proposition 2], we have demonstrated that,
for a compact subspace, the dimension of the dictionary de-
termined with the above sparsification rule remains finite as n
goes to infinity.

Let αn be the coefficients estimated at time step n, and
Kn and κn the corresponding (Gram kernel) matrix and vec-
tor, respectively. Then, the optimal solution from (6) is

αn = K
−1
n κn. (8)

4.4. Online update scheme

Upon the arrival of a new sample at time n + 1, we consider
the coherence criterion (7), to determine whether the model
order remains unchanged or is incremented by including the
new element in the dictionary.

First case: max
i∈I

|κ(xi,xn+1)| > µ0

In this case, the new candidate entry Φ(xn+1) is not included
in the dictionary. Accordingly, the coefficients αi’s are up-
dated, in order to approximate the discarded new entry by the
elements of the the expansion (3). Since the dictionary re-
mains unchanged, we have Kn+1 = Kn. The only change
is within the vector κn in (8), which becomes

κn+1 =
1

n+ 1

(

nκn + b
)

where b is the column vector with entries κ(xi,xn+1) for all
i ∈ I. We get the updating rule of αn+1 from αn as follows:

αn+1 = K
−1
n+1κn+1

=
n

n+ 1
αn +

1

n+ 1
K

−1
n b.
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Fig. 2. The time series, with model elements illustrated (in red), for the proposed offline (left figure) and online (middle figure)
algorithms, and the adaptive one-class SVM (right figure).

Second case: max
i∈I

|κ(xi,xn+1)| ≤ µ0

In this case, the new candidate Φ(xn+1) is included into the
dictionary. The number of terms in the model (3) is incre-
mented, with the dictionary being determined by I ∪{n+1}.
This leads to the following expressions of the new Gram ma-
trix

Kn+1 =

[

Kn b

b
$ κ(xn+1,xn+1)

]

.

In order to determine K−1
n+1, we use the the Woodbury matrix

identity to get the inverse of Kn+1 from K
−1
n :

K
−1
n+1 =

[

K
−1
n 0

0
$ 0

]

+
1

c

[

−K
−1
n b

1

]

[

−b
$
K

−1
n 1

]

,

where c = κ(xn+1,xn+1) − b
$
K

−1
n b and 0 is a column

vector of zeros of appropriate size.

The vector κn+1 is updated from κn, with

κn+1 =
1

n+ 1

[

nκn + b

κn+1

]

where κn+1 =
∑n+1

i=1
κ(xn+1,xi). The latter expression re-

quires having all the samples in memory. Still one can over-
come this difficulty by considering an instant estimation, with
κn+1 = (n + 1)κ(xn+1,xn+1). It is worth noting that the
second case, i.e., the incrementation of the model order, sel-
dom occurs.

Finally, by combining these expressions, we get the fol-
lowing update of αn+1 from αn:

αn+1 =
1

n+ 1

[

nαn +K
−1
n b

0

]

−
1

(n+ 1) c

[

K
−1
n b

1

]

[nb$αn + b
$
K

−1
n b− κn+1].

5. EXPERIMENTATIONS

Toy dataset

In order to illustrate our approach, we considered a 2D toy
dataset. The training set consisted of 2 000 samples drawn
from a “frame” distribution, as illustrated in Figure 1. For
such large scale dataset, classical one-class SVM algorithms
cannot be applied. In our experiments, we used the Gaussian
kernel, with its bandwidth set to σ = 0.5. We applied the
proposed online algorithm, as given in Section 4.4. The co-
herence threshold4 in (7) was set to µ0 = 0.01, which led
to a model with 167 elements (8% of the training data). The
distance, computed with (4) and shown with the contours in
Figure 1, illustrates the boundary of the (hyper)sphere.

Time series domain description

We conducted some experiments on a time series. It consists
of the variation in chlorine concentration at a given node in a
water network. Chlorine is a highly efficient disinfectant, in-
jected in water supplies to kill residual bacteria. Chlorination
is the process of adding chlorine to water as a method of water
purification to make it fit for human consumption as drinking
water. The measurements of chlorine were taken from the
public water supplies of the Cannes city in France. We con-
sidered 2 days of chlorine concentration measures, with mea-
surements sampled at the rate of a sample every 3 minutes.
These time series exhibit large fluctuations due to the varia-
tions in water consumption and an inefficient control system.
See Figure 2.

To capture the structure of the time series, a 10-length
sliding window was used, with xi = [xi−9 · · · xi−1 xi],
where the Gaussian kernel was applied and σ = 0.2 for all al-
gorithms. We compared the proposed algorithms with two al-
gorithms from the literature: the one-class SVM algorithm [3]

4The coherence threshold plays the same role as the ν parameter in SVM.
Preliminary experiments are often conducted to select the appropriate val-
ues. A comparative study with different values is not provided due to space
restrictions.
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and the adaptive one-class SVM [7]. Figure 2 shows the el-
ements retained in the model, obtained either by pruning as
given by the coherence parameter in (5) (offline algorithm)
or by using the coherence criterion in (7) (online algorithm).
For the online algorithm, the coherence threshold was set to
µ0 = 0.5, which led to a model with 49 elements. To get com-
parable results, the number of elements was set to 49 for the
offline algorithm, and the parameters of one-class SVM and
adaptive one-class SVM were set accordingly. It is obvious
from Figure 2 that the retained elements (in red) are relevant
in describing the fluctuations in the time series. The perti-
nence of the proposed model update rules are shown with the
the decision function (distance computed with (4)), as given
in Figure 3. This illustrates that our approach, online and of-
fline, is comparable to the one-class SVM and adaptive one-
class SVM results, with lower computational complexity. See
Table 1 for the computational cost of these algorithms.
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Fig. 3. The decision functions estimated by several algo-
rithms. A threshold can be introduced for novelty detection
(not illustrated here).

offline algorithm online algorithm one-class SVM [3] adaptive [7]

3.7 0.6 141.4 1.8

Table 1. Estimated computational time (in seconds) of differ-
ent algorithms for the real time series.

6. CONCLUSION

In this paper, we investigated a novel online one-class classi-
fication method, by associating the coherence parameter with
a least-squares optimization problem. Future works include a
convergence study and the use of a step-size parameter.
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