
NT-SIM: A CO-SIMULATOR FOR NETWORKED SIGNAL PROCESSING APPLICATIONS

Stephen Won, Chung-Ching Shen, and Shuvra S. Bhattacharyya

University of Maryland

College Park, MD 20742 USA

{swon, ccshen, ssb}@umd.edu

ABSTRACT

In networked signal processing systems, network nodes

that perform embedded processing on sensory inputs and

other data interact across wired or wireless communication

networks. In such applications, the processing on individ-

ual network nodes can be described in terms of dataflow

graphs. However, to analyze the correctness and performance

of these applications, designers must understand the inter-

actions across these individual “node-level” dataflow graphs

— as they communicate across the network — in addition

to the characteristics of the individual graphs. In this paper,

we develop a new simulation environment, called the NS-2

– TDIF SIMulation environment (NT-SIM) — that provides

integrated co-simulation of networked signal processing sys-

tems. NT-SIM systematically combines the network analysis

capabilities provided by the Network Simulator (ns) with

the scheduling capabilities of a dataflow-based framework,

thereby providing novel features for more comprehensive

simulation of networked signal processing systems.

Through a novel integration of tools for network and

dataflow graph simulation, our NT-SIM environment allows

comprehensive simulation and analysis of networked signal

processing systems. We present a case study that concretely

demonstrates the utility of NT-SIM in the context of a hetero-

geneous signal processing system design.

Index Terms— dataflow graphs, heterogeneous comput-

ing, co-simulation, scheduling

1. INTRODUCTION

Dataflow models are used to express the functionality of a

variety of applications, including applications in many ar-

eas of signal processing (e.g., see [1]). In dataflow mod-

els of computation, applications are represented by directed

graphs. Vertices (actors) of these graphs represent computa-

tional modules for running (firing) computational tasks, and

edges represent first-in-first-out (FIFO) channels for storing

data values (tokens), and establishing data dependencies be-

tween actors. When an actor is fired, tokens are consumed

from and produced onto its input and output edges, respec-

tively. Dataflow modeling of signal processing systems al-

lows designers or design tools to schedule the firing of ac-

tors in ways that make efficient use of limited processing re-

sources.

To utilize the benefits of dataflow graphs, the targeted

dataflow interchange format (TDIF) development tool can be

used to provide efficient mapping of application representa-

tions onto a variety of platforms [2]. TDIF extends the capa-

bilities of the dataflow interchange format (DIF) [3] with dy-

namic dataflow software synthesis, cross-platform actor de-

sign, and dataflow-integrated features for application imple-

mentation. TDIF provides for dynamic dataflow modeling

and scheduling to map signal processing applications onto

heterogeneous platforms, and also provides retargetable actor

construction, software synthesis, and instrumentation-based

schedule evaluation and tuning [2].

However, dataflow-based modeling is typically not ap-

plied to networking aspects of networked signal processing

applications. Network simulations involve link conditions

and data protocols that are usually not represented using

dataflow techniques. Network/application co-simulators ad-

dress the issue of simulating the network conditions and the

application at each node. However, most co-simulators today

do not utilize dataflow-based modeling of the application

(i.e., the intra-node functionality). As the range of network

and distributed applications expands, it becomes increasingly

important to develop methods to simulate the intra-node net-

work conditions together with the dataflow models at the

node level. Such a method would provide complete system

analysis of networked signal processing applications without

giving up the benefits of dataflow-based design practices at

the level of individual nodes.

In this paper, we seek to bridge this gap by presenting the

NS-2 – TDIF SIMulation environment (NT-SIM). NT-SIM is a

co-simulation tool that combines TDIF with the popular Net-

work Simulator (ns-2) [4] to provide novel capabilities for ex-

perimentationwith networked signal processing systems. NT-

SIM is a flexible environment that allows designers to com-

pletely simulate systems at both the node and network lev-

els. Dataflow-based design tools are available to assist in the

development of layered sensing applications and other kinds

of signal processing applications for which dataflow models

can be applied to derive efficient placement and scheduling

20th European Signal Processing Conference (EUSIPCO 2012) Bucharest, Romania, August 27 - 31, 2012

© EURASIP, 2012 - ISSN 2076-1465 1094

solutions. At the same time, ns-2 allows for detailed analy-

sis of network properties and their effect on node information

sharing. This allows designers to understand and validate the

operation of network nodes as well as their interactions in the

network.

We demonstrate that these objectives can be achieved

through a case study of a sensor network performing image

registration across multiple cameras with different views of an

object. Through these experiments, we also demonstrate that

our integration of network simulation with dataflow-based

modeling and scheduling allows for new and useful analysis

methods previously unavailable to designers in heterogeneous

computing systems.

2. NT-SIM

Building on the capabilities of TDIF and ns-2, we have devel-

oped NT-SIM, a co-simulation environment that supports de-

sign and implementation of networked signal processing ap-

plications on heterogeneous platforms. NT-SIM allows simu-

lation of end system behavior using TDIF, and network events

using NSE.

Fig. 1 illustrates the execution order and interactions

among components in the NT-SIM framework. Application

behavior is specified based on dataflow modeling principles

using the TDIF framework. To interface with the end system

dataflow simulation and traffic generation for the network, the

network behavior and protocols used by the nodes are defined

by the OTcl script, and simulated by the NSE framework.

In NT-SIM, special dataflow actors called interface actors

(IAs) are developed to allow the sending and receiving of in-

formation between NSE and TDIF. In contrast to conventional

dataflow actors, which represent functional components from

the application specification, IAs are responsible for traffic

generation fromTDIF-basedmodeling subsystems, and injec-

tion of this generated traffic into the NSE framework. IAs are

also responsible for time synchronization between the coop-

erating TDIF- and NSE-based simulation environments. This

collection of IAs in a TDIF-based dataflow subsystem makes

the subsystem appear as a single node within an enclosing

ns-2 network topology.

The architecture of NT-SIM is designed to preserve

the dataflow principles provided by the TDIF environment

throughout all TDIF-based subsystems, including the inter-

actions that occur at the interfaces of these subsystems (i.e.,

at the IAs). The designer is responsible for specifying the

distribution of actors to the nodes in the network graph. In

the NT-SIM framework, the designer develops the system

in a hierarchical manner: actor design using TDIF, dataflow

graph design at each network node using DIF, and network

graph design using ns-2. The FIFO communication channels

in DIF act as bridges between actors in the dataflow graph.

Correspondingly, the IAs act as bridges between dataflow

graphs that are placed on different network nodes. In NT-

SIM, dataflow subsystems can be suspended (e.g., as they

wait for data) and resumed arbitrary numbers of times while

the overall network is being simulated, thus allowing for sim-

ulation of complex and tightly-coupled feedback behaviors

across the network.

Thus, NT-SIM provides designers with a hierarchical,

modular process for modeling and experimenting with net-

worked signal processing systems. NT-SIM also provides a

useful target for incorporating additional levels of automation

in the design and simulation processes. For example, protocol

configurations and associated implementation details can be

determined and optimized automatically by incorporating as-

sociated IA synthesis capabilities within the TDIF synthesis

engine. Building on NT-SIM to develop such new automa-

tion and optimization capabilities is an interesting and useful

direction for future work.

The processes of design and experimentation using NT-

SIM are demonstrated more concretely in Section 3, which

provides a case study involving the development of a visual

sensor network.

3. CASE STUDY: VISUAL SENSOR NETWORK

We demonstrate the utility of NT-SIM with a case study of

simulating a visual sensor network designed to perform im-

age registration on different views of the same object. This

case study is motivated by the rapidly developing field of dis-

tributed sensing and its application in tasks such as layered

sensing, surveillance, and videoconferencing [5, 6].

Instead of gaining knowledge about the environment

through a small number of expensive cameras, multiple low-

cost cameras can be utilized to provide more complete pic-

tures for challenging, high-level vision tasks such as image

registration or tracking [7]. This requires the cameras to

be networked together, and to perform collaboration tasks

among themselves to optimize key metrics, such as real-

time performance, power consumption, and image processing

accuracy. Such metrics generally depend on node-network in-

teractions, and thus conventional simulation methods, which

consider only network and node characteristics in isolation,

are not sufficient. NT-SIM is able to assist in the design of

such distributed sensing systems by providing the designer

with integrated capabilities to simulate algorithms and appli-

cations at the network and node levels.

3.1. Distributed Vision Sensor Systems

Visual sensor networks (VSNs) are comprised of groups of

networked visual sensors with image capture, computation,

and wireless communication capabilities. To maximize the

effectiveness of a VSN, collaboration among the sensors can

take place with the exchange or fusing of visual information

from similar or different perspectives of an area [7]. This

1095

Fig. 1. Illustration of the interaction between dataflow applications and network simulations in NT-SIM.

Fig. 2. A dataflow graph model of SIFT-based feature detec-

tion and image registration across a network.

allows the information to be used in tracking, panoramas, and

registration.

The scale-invariant feature transform (SIFT) [8] is an al-

gorithm that can be used to fuse together images from mul-

tiple cameras that are observing the same object. SIFT uses

the difference of Gaussian (DoG) to detect feature keypoints

at different visual scales. To highlight strong features in the

images, the eigenvalues of the Hessian matrix of the image

are used to highlight reliable features to use. Results can

improve with random sample consensus (RANSAC), which

removes outliers and erroneous features detected by the al-

gorithm. Fig. 2 shows a dataflow graph model of the SIFT

algorithm. Here, the SIFT algorithm is used to register two

images with different views of the same object.

Each sensor node in a VSN has to fulfill application re-

quirements while running under constraints involving mem-

ory, performance, data rates, and energy [9]. By distribut-

ing actors appropriately across the network, more processing-

intensive tasks can be performed at one or more stationary

systems that are connected to power sources, while simpler

tasks are handled by the sensor nodes. This allows energy on

the sensor nodes to be conserved while the computationally-

intensive task of image registration is carried out, and also

helps to improve the performance of image registration by

allowing use of more powerful (less power constrained) plat-

forms for the registration tasks.

module CUDA sift descriptor r

output output1 sift token

output output2 sift token

output output3 sift token

input input1 oframes

input input2 gss

mode init

mode exe

Fig. 3. TDIF code for the SIFT descriptor actor.

In our case study on a SIFT VSN, we experiment with this

approach of heterogeneous computing and distribution-based

optimization of energy and performance for the SIFT appli-

cation in a VSN. This experimentation is carried out through

mapping of the dataflow graphs for distributed signal pro-

cessing onto separate network nodes, configuration of IAs in

TDIF for appropriate communication among the nodes, and

simulation using NT-SIM.

3.2. Actor Design

Each of the actors in the SIFT algorithm is modeled using

the TDIF environment. For this purpose, the SIFT algorithm

is broken into smaller procedural units to be modeled with

actors. At this level of NT-SIM, the actors are not assigned

to any particular nodes in a network. The focus at the ac-

tor design level of NT-SIM is to create actors that are rep-

resented by the TDIF language. In this phase of the design

process, designers specify the target language of each actor,

along with the inputs, outputs, required parameters, and pos-

sible execution modes for the actor. Fig. 3 shows the TDIF

file for the SIFT descriptor actor, which passes the SIFT de-

scriptor to the keypoint matching, RANSAC, and rigid trans-

formation actors. The SIFT descriptor actor represented in

Fig. 3 is specified as a CUDA-targeted actor for GPU-based

implementation.

As an example, Fig. 4 shows TDIF code for sending an

image from the actor representing the capture of the target

image to the network simulated by ns-2. For simplicity and

clarity in the illustration, we design the network to follow

the UDP protocol. As a result, the image-sending actor rep-

resented by Fig. 4 takes in the address and port number as

character-string parameters, and these parameters are em-

1096

module C send udp sift t img

input input image image token*

param send addr char*

param send port char*

mode init

mode send

Fig. 4. TDIF code for sending an image to NSE via the UDP

protocol.

ployed by the actor in addition to any inputs coming from

other actors in the enclosing dataflow graph subsystem.

3.3. Actor Separation at the Node Level

In NT-SIM, the application that runs on each network node is

represented by a specification in the DIF language. To opti-

mize the energy and performance of the SIFT VSN, actors are

split onto different network nodes depending on their roles in

the overall application graph. In this case study, actors are

distributed across network nodes depending on whether they

perform feature detection or image registration. This results

in multiple dataflow graph subsystems with each subsystem

corresponding to a single network node. Each of these sub-

systems can be specified using a DIF file that defines the ac-

tors as vertices and the connections between them as edges in

the associated dataflow graph.

The current version of NT-SIM systematically integrates

designer-provided tests and schedules into the overall net-

work simulation, and automates the execution of this simu-

lation across the entire network. Thus, NT-SIM bridges the

gap between network- and dataflow-graph-level simulation in

networked signal processing systems, and provides novel ca-

pabilities into which existing and newly developed dataflow

scheduling techniques can be integrated to further enhance

simulation automation and design space exploration.

3.4. Network Creation

When using NT-SIM, the designer creates a Tcl script that

models the network topology on NSE to simulate the network.

In order to use NSE on ns-2, the RealTime scheduler has to

be used with the simulator. Nodes are declared along with the

network objects and agents. When using the UDP protocol,

each of the network objects has to declare the IP address and

port number in the script. These network objects are attached

to their corresponding agents. Afterwards, the connections

between nodes can be defined, along with the bandwidth, de-

lay, and queue behavior for each connection.

Each agent is attached to a node. If the nodes share a

common link, then the agents are also connected. Afterwards,

Fig. 5. The topology represented by the Tcl script for the

SIFT sensor network.

NSE can be run. Fig. 5 illustrates the network topology used

in our SIFT VSN case study.

3.5. Simulation of the Distributed System

After the actors, dataflow graph subsystems (the portions of

the dataflow graph that are mapped onto individual network

nodes), and the network have been specified, the overall sys-

tem can be simulated using NT-SIM. The Tcl script for the

network is run using NSE. This allows network connections

to be made between the TDIF and ns-2 environments. Sepa-

rate test and DIF files are required for each VSN node. After

the executables have been generated for each VSN node, they

can be run — concurrently with simulation of the resulting

network traffic — to send and receive data to and from NSE,

respectively.

The SIFT sensor network is simulated on a 3GHz PC with

two Intel Xeon CPUs, 3GB RAM, and an NVIDIA GTX260

GPU. The gcc version 3.4.4 and nvcc version

3.2 compilers are used in the back end of the implementation

process.

The functional accuracy of NT-SIM was verified through

simulation of the SIFT VSN case study. End systems (net-

work nodes) representing reference and target image sensors

that can perform feature detection were supplied with only the

reference and target image shown in Fig. 6. Functional accu-

racy was validated by the match between the produced, regis-

tered image and a ground-truth, registered image provided by

the simulation of the single-node SIFT algorithm.

1097

Fig. 6. (Clockwise from top left) Reference image, target im-

age, and registered image from the simulated SIFT VSN net-

work.

4. CONCLUSIONS

We have introducedNT-SIM as a co-simulation tool that com-

bines the dataflow paradigms of TDIF and DIF for actor and

dataflow graph design, respectively, and the network simu-

lation capabilities of NSE. The resulting tool provides use-

ful new capabilities for integrated simulation of networked

signal processing systems. We have demonstrated that using

NT-SIM, a designer can simulate a complete, networked sys-

tem comprised of a distinct application subsystem on each

network node with actors modeled using formal dataflow-

based representations. The useful features of NT-SIM include

its modular design flow, where actors are designed using the

TDIF tool, application graphs are modeled in the DIF frame-

work, and the network is represented in ns-2.

Useful directions for further development of NT-SIM in-

clude automating the partitioning of an application dataflow

graph across a network through the TDIF synthesis engine;

application of instrumentation actors in TDIF to encapsulate

relevant network performance measurements provided by

NSE; incorporating different network protocols along with

reuse of the associated protocol code as TDIF actor library

components; and exploration involving other kinds of net-

worked signal processing applications, such as distributed

speech processing [10] and adaptive stream mining [11].

5. REFERENCES

[1] S. S. Bhattacharyya, E. Deprettere, R. Leupers, and

J. Takala, Eds.,Handbook of Signal Processing Systems.

Springer, 2010.

[2] C. Shen, H. Wu, N. Sane, W. Plishker, and S. S. Bhat-

tacharyya, “A design tool for efficient mapping of mul-

timedia applications onto heterogeneous platforms,” in

Proceedings of the IEEE International Conference on

Multimedia and Expo, Barcelona, Spain, July 2011, 6

pages in online proceedings.

[3] C. Hsu, M. Ko, and S. S. Bhattacharyya, “Software syn-

thesis from the dataflow interchange format,” in Pro-

ceedings of the International Workshop on Software

and Compilers for Embedded Systems, Dallas, Texas,

September 2005, pp. 37–49.

[4] K. Fall and K. Varadhan, The ns Manual (formerly ns

Notes and Documentation), November 2011.

[5] M. Bryant, P. Johnson, B. M. Kent, M. Nowak, and

S. Rogers, “Layered sensing: Its definition, attributes,

and guiding principles for AFRL strategic technology

development,” Sensors Directorate, U.S. Air Force Re-

search Laboratory, Tech. Rep., May 2008.

[6] A. C. Sankaranarayanan, A. Veeraraghavan, and

R. Chellappa, “Object detection, tracking and recog-

nition for multiple smart cameras,” Proceedings of the

IEEE, vol. 96, no. 10, pp. 1606–1624, October 2008.

[7] Y. Bai and H. Qi, “Feature-based image comparison for

semantic neighbor selection in resource-constrained vi-

sual sensor networks,” EURASIP Journal on Image and

Video Processing, 2010, doi:10.1155/2010/469563.

[8] D. G. Lowe, “Distinctive image features from scale-

invariant keypoints,” International Journal of Computer

Vision, vol. 60, no. 2, pp. 91–110, 2004.

[9] I. F. Akyildiz, T. Melodia, and K. R. Chowdhury, “Wire-

less multimedia sensor networks: Applications and

testbeds,” Proceedings of the IEEE, vol. 96, no. 10, pp.

1588–1605, October 2008.

[10] C. Shen, W. L. Plishker, D. Ko, S. S. Bhattacharyya, and

N. Goldsman, “Energy-driven distribution of signal pro-

cessing applications across wireless sensor networks,”

ACM Transactions on Sensor Networks, vol. 6, no. 3,

June 2010, article No. 24, 32 pages.

[11] R. Ducasse, D. Turaga, and M. van der Schaar, “Adap-

tive topologic optimization for large-scale stream min-

ing,” IEEE Journal on Selected Topics in Signal Pro-

cessing, vol. 4, no. 3, pp. 620–636, June 2010.

1098

