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ABSTRACT

Due to complex subsurface structure properties, seismic

records often suffer from coherent noises such as multi-

ples. These undesired signals may hide the signal of inter-

est, thus raising difficulties in interpretation. We propose

a new variational framework based on Maximum A Pos-

teriori (MAP) estimation. More precisely, the problem of

multiple removal is formulated as a minimization problem

involving time-varying filters, assuming that a disturbance

signal template is available and the target signal is sparse in

some orthonormal basis. We show that estimating multiples

is equivalent to identifying filters and we propose to employ

recently proposed convex optimization procedures based on

proximity operators to solve the problem. The performance

of the proposed approach as well as its robustness to noise is

demonstrated on realistically simulated data.

Index Terms— convex optimization, wavelets, time-

varying filters, regularization.

1. INTRODUCTION

Standard reflection seismology infers subsurface structure

properties from seismic waves generated at their interfaces

and recorded after propagation in the medium (see Fig. 1).

Due to wave propagation physics and the complicated nature

of subsurface layers, seismic data is subject to a variety of

distortions and disturbances [1, 3] that hinder subsequent

geophysical interpretation. The complexity of these data has

contributed to the development of several efficient signal pro-

cessing tools; for instance wavelets [2] or robust ℓ1-based
sparse restoration [4], which are now commonly used in

signal and image analysis [5].

Multiples correspond to a specific type of unwanted co-

herent seismic events related to wave field reflection bounces

inside layers [6]. These reverberations sometimes are strong

enough to obscure deeper target reflectors of geological in-

terest, which may become nearly invisible. Their attenuation

thus represents one of the greatest challenges in present

seismic processing. Since they relate to reflections on above-

situated layers, they are highly correlated and possess spectral

contents similar to deeper reflections. One of the most effec-

tive multiple subtraction is based on prior computation of

a multiple model, denoted hereafter as “template”. A tem-

plate is adapted to the observed data, traditionally using

least-squares criteria, and subsequently subtracted. It is gen-

erally assumed that the matching should be performed in a

non-stationary fashion, as the transfer function between the

template and the actual multiple signal should account for

time-dependent wave distortion. Moreover, the matched filter

should compensate for inaccuracies in template modeling,

especially in amplitude and delay. Recently, several works

in geophysics have revisited the use of non-quadratic criteria,

including Huber function [7] or ℓp (p ∈ [1, 2]) norms, due to
the alleged non-Gaussianity of seismic data [8].

Fig. 1. Principles of seismic wave propagation, with reflections on

different layers, and data acquisition. Solid blue: primary; dashed

red: multiple.

The present work proposes an original approach to the

multiple removal problem. In standard restoration [9], knowl-

edge about the degradation kernel is often required. It is

replaced here by the knowledge of a template, the degrada-

tion kernel being estimated. The resulting algorithm recur-

sively estimate a Finite Impulse Response (FIR) filter, which

is constrained to exhibit slow variations over time. This hy-

pothesis is highly consistent with wave propagation assump-

tions. More precisely, the estimation problem is formulated

as a convex variational problem involving a non-smooth cost

function. The paper is structured as follows: Section 2 intro-
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duces the considered model, Section 3 presents the proposed

MAP-based methodology, followed in Section 4 by reminders

on proximal methods. The proposed approach is validated in

Section 5 on realistically simulated multiple contaminations.

2. MODELING MULTIPLE REFLECTIONS

This section aims at describing the employed model, account-

ing for multiple reflections in seismic data. More precisely,

we assume that an array of sensors delivers data

z(n) = s(n) + y(n) (1)

where n ∈ {0, · · · , N−1} is the time index, z = (z(n))0≤n<N
are the observed data, combining the primary y = (y(n))0≤n<N
(signal of interest, unknown), and the multiples (s(n))0≤n<N
(sum of undesired reflected signals), depicted in solid blue

and dashed red in Fig. 1.

We assume that a template (r(n))0≤n<N for the distur-

bance signal is available, which is related to (s(n))0≤n<N
through an FIR non-causal convolutive model

s(n) =

p′+P−1∑

p=p′

h(n)(p)r(n−p) (2)

where h(n) is an unknown impulse response corresponding to
time n and where p′ ∈ {−P +1, · · · , 0} (p′ = 0 corresponds
to the causal case). It must be emphasized that the dependence

w.r.t. the time index n of the impulse response implies that

the filtering process is not time invariant, although it can be

assumed slowly varying in practice. Eq. (2) can be expressed

more concisely as

s = Rh (3)

by appropriately defining vectors s, h and matrix R. More

precisely,

s =
[
s(0) · · · s(N−1)

]⊤
, (4)

h =
[
h(0)(p′) · · · h(0)(p′ + P − 1) · · ·

· · · h(N−1)(p′) · · · h(N−1)(p′ + P − 1)
]⊤

(5)

and

R =




R(0) 0 · · · 0
0 R(1) · · · 0
... 0

. . .
...

0 0 · · · R(N−1)


 (6)

where

[
(R(0))⊤(R(1))⊤ · · · (R(N−1))⊤

]⊤
=




r
(−p′) · · · r

(0)
0 · · · 0

r
(−p′+1) · · · r

(0)
0 · · · 0

...

r
(N−1)

r
(N−2) · · · r

(N−P )

0 r
(N−1) · · · r

(N−P+1)

...

0 · · · 0 r
(N−1) · · · r

(N−P−p′)




.

(7)

One can note that the matrix R is a block diagonal matrix

and that the concatenation of its block diagonal elements is a

Toeplitz matrix of size N × P .
With this formulation, the problem of providing an esti-

mate ŷ of the primary turns out to be equivalent to comput-

ing an estimate ĥ of the impulse response and to recovering

ŷ = z −Rĥ.

3. PROPOSED APPROACH

3.1. Maximum A Posteriori estimation

Let us now show how the problem can be addressed from a

Bayesian perspective. We assume that the characteristics of

the primary are appropriately described through a prior statis-

tical model in a basis, e.g. a wavelet one [10]. For instance, if

F ∈ R
N×N designates the analysis operator and x the asso-

ciated coefficients, we have [11]

y = F−1x (8)

where F−1 ∈ R
N×N is the synthesis operator. In addition,

we assume that x is a realization of a random vector, whose

probability density function (pdf) is given by

(∀x ∈ R
N ) fX(x) ∝ exp(−ϕ(x)) (9)

where ϕ is the associated potential. For simplicity, ϕ can

be chosen to be separable, which corresponds to an indepen-

dence assumption on the basis coefficients:

(
∀x = (xk)1≤k≤N ∈ R

N
)

ϕ(x) =

N∑

k=1

ϕk(xk). (10)

where, for every k ∈ {1, . . . , N}, ϕk : R → ]−∞,+∞]. In
order to promote the sparsity of the decomposition, a standard

choice for this potential is ϕk = κk| · | where κk > 0. On the
other hand, to take into account the available information on

the unknown filter, especially its regular variations along the

time dimension, it can be assumed that h is a realization of a
random vector, whose pdf is expressed as

(∀h ∈ R
NP ) fH(h) ∝ exp(−ρ(h)), (11)
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and which is independent of x. By resorting to an estima-

tion of h in the sense of the MAP, the problem can thus be

formulated under the following variational form:

minimize
h∈RNP

ϕ
(
F (z −Rh)

)
+ ρ(h). (12)

In this approach, ϕ represents some data fidelity term taking

into account the statistical properties of the basis coefficients

and ρ models prior informations that are available on h.

3.2. Prior information about the filters

The filters are here assumed to vary along the time index n.
To additionally take into account a prior knowledge on slow

filter variations, the following bounded variation constraint

can be introduced

(
∀(n, p)

)
|h(n+1)(p)− h(n)(p)| ≤ εp. (13)

This inequality restricts corresponding FIR coefficient varia-

tions between estimations at two consecutive time samples.

The bound εp may depend on the shape of the expected filter.
For example, its dependence on the coefficient index p may
enable a larger (resp. smaller) difference for filter coefficients

taking larger (resp. smaller) values.

The associated closed convex set is defined as

C =
{
h ∈ R

NP | ∀(n, p) |h(n+1)(p)− h(n)(p)| ≤ εp

}
.

(14)

We subsequently assume that the pdf fH is compactly sup-

ported on C, so yielding the following criterion to be mini-
mized, with ρ̃ : RNP → ]−∞,+∞]

minimize
h∈RNP

ϕ
(
F (z −Rh)

)
+ ρ̃(h) + ιC(h). (15)

For computational issues, the convex set C can be expressed

as the intersection of two convex subsets C1 and C2:

C1 =

{
h | ∀p, ∀n ∈

{
0, . . . ,

⌊
N

2

⌋
− 1

}

∣∣∣h(2n+1)(p)− h(2n)(p)
∣∣∣ ≤ εp

}
(16)

C2 =

{
h | ∀p, ∀n ∈

{
1, . . . ,

⌊
N − 1

2

⌋}

∣∣∣h(2n)(p)− h(2n−1)(p)
∣∣∣ ≤ εp

}
. (17)

Note that in each subset, the involved variables are decoupled.

Using these two subsets, Criterion (15) becomes:

minimize
h∈RNP

ϕ
(
F (z −Rh)

)
+ ρ̃(h) + ιC1

(h) + ιC2
(h). (18)

For tractability, in the following, the functions ϕ and ρ̃ are

assumed to be convex.

4. PROXIMAL ALGORITHM

To perform the minimization in (18), we employ the PPXA+

method recently developed in [12]. This algorithm constitutes

a generalization of the Parallel Proximal Algorithm (PPXA)

proposed in [13]. It is also closely related to Augmented La-

grangian methods [14]. This algorithm requires to compute

the proximity operators of each of the terms in (18). Some

basic facts about proximity operators are recalled next.

4.1. Proximity operators

Let H be a separable real Hilbert space with scalar product

〈· | ·〉 and norm ‖ ·‖. Γ0(H) denotes the class of proper lower
semi-continuous convex functions from H to ]−∞,+∞].
The proximity operator [15] of φ ∈ Γ0(H) is defined as

proxφ : H → H : u 7→ argmin
v∈H

1

2
‖v − u‖

2
+ φ(v). (19)

Hence, if C is a nonempty closed convex set ofH, and ιC de-

notes the indicator function of C, i.e., (∀u ∈ H) ιC(u) = 0 if
u ∈ C,+∞ otherwise, then, proxιC reduces to the projection

ΠC onto C.
This operator possesses numerous properties [11, 16].

Some of them, which are useful to derive explicit forms of

proximity operators, are stated below:

• Let ψ = φ(· − v), where v ∈ H. Then

(∀u ∈ H) proxψ u = v + proxφ(u− v). (20)

• Let ψ : v 7→ φ(−v). Then

(∀u ∈ H) proxψ u = − proxφ(−u). (21)

Furthermore, when dealing with a composition of a linear

operator and a convex function, the following property can be

used:

Proposition 4.1 [16] Let G be a real Hilbert space. Let φ ∈
Γ0(G) and let L : G → H denote a bounded linear operator.

Suppose that LL⊤ = χ I , for some χ ∈ ]0,+∞[. Then,

φ ◦ L ∈ Γ0(H) and proxφ◦L = I +χ−1L⊤(proxχφ− I )L.

Hereabove, I denotes the identity operator.

4.2. Choice of the data fidelity and regularization terms

and associated proximity operators

Concerning the data fidelity term, it can be observed that it

is equal to h 7→ Φ(Rh), where Φ
△

= ϕ(F (z − ·)). If F is a

decomposition onto an orthonormal basis, by using (20), (21)

and Proposition 4.1, it can be easily derived that

(∀x ∈ R
N ) proxΦ x = z−F−1 proxϕ(F (z−x)). (22)

As already mentioned in Section 3.1, the separable form

(10) can be adopted for ϕ, where we can set, for every k ∈
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{1, . . . , N}, ϕk = κk| · |
pk with pk ∈ [1,+∞[ and κk ∈

]0,+∞[. Closed form expressions of the considered power

functions are indeed available for certain values of the expo-

nents [11]. A similar parametric form has been adopted for

the regularization function ρ̃.
Concerning the constraints modeled by the closed con-

vex sets C1 and C2, the proximity operators of the associated

indicator functions are given by the projections onto these

sets. These projections reduce to projections onto a set of

hyperslabs of R2. More precisely, the projection onto C1 is

calculated as follows: let h ∈ R
NP and let g1 = ΠC1

(h);
then for every p ∈ {p′, · · · , p′ + P − 1} and for every n ∈{
0, . . . ,

⌊
N
2

⌋
− 1

}
,

1. if |h(2n+1)(p)− h(2n)(p)| ≤ εp, then

g
(2n)
1 (p) = h(2n)(p), g

(2n+1)
1 (p) = h(2n+1)(p);

2. if h(2n+1)(p)− h(2n)(p) > εp, then

g
(2n)
1 (p) =

h(2n+1)(p) + h(2n)(p)

2
−
εp
2

g
(2n+1)
1 (p) =

h(2n+1)(p) + h(2n)(p)

2
+
εp
2
;

3. if h(2n+1)(p)− h(2n)(p) < −εp, then

g
(2n)
1 (p) =

h(2n+1)(p) + h(2n)(p)

2
+
εp
2

g
(2n+1)
1 (p) =

h(2n+1)(p) + h(2n)(p)

2
−
εp
2
.

Similar expressions hold for the projection onto C2.

4.3. Proposed algorithm

In the considered application, we propose to employ the it-

erative algorithm in [12] (see Algorithm 1). This algorithm

mainly consists of alternately computing proximity operators

and projections (see Section 4.2). Additionally, it can be no-

ticed that it requires to compute the inverse of matrix Q ∈
R
NP×NP given by ω1R

⊤R+(ω2+ω3+ω4) I . Since R
⊤R

has a block diagonal structure, the inversion can be performed

in a very efficient manner.

5. NUMERICAL EXPERIMENTS

In this section, we aim at showing the good performance

of the proposed approach. Data y = (y(n))0≤n<N and

r = (r(n))0≤n<N considered here were generated from

actual seismic data primaries and multiples. In the fol-

lowing, we have N = 2048. The inner parameters of

PPXA+ have been chosen in an empirical manner: λk ≡ 1.5,
ω1 = 10000/N, ω2 = ω1/P, ω3 = ω4 = 10ω2; the algo-

rithm is initialized by randomly generatingN positive-valued

vectors of size P summing up to one. The algorithm is

Algorithm 1 PPXA+

Set (ω1, ω2, ω3, ω4) ∈ ]0,+∞[
4
and t1,0 ∈ R

N , t2,0 ∈
R
NP , t3,0 ∈ R

NP , t4,0 ∈ R
NP

Q = ω1R
⊤R+ (ω2 + ω3 + ω4) I

h0 = Q−1
(
ω1R

⊤t1,0 + ω2t2,0 + ω3t3,0 + ω4t4,0

)

for i = 0, 1, . . . do
w1,i = prox Φ

ω1

(t1,i) and w2,i = prox ρ̃
ω2

(t2,i)

w3,i = ΠC1
(t3,i) and w4,i = ΠC2

(t4,i)

ci = Q−1
(
ω1R

⊤w1,i + ω2w2,i + ω3w3,i + ω4w4,i

)

t1,i+1 = t1,i + λi (R(2ci − hi)− w1,i)
t2,i+1 = t2,i + λi (2ci − hi − w2,i)
t3,i+1 = t3,i + λi (2ci − hi − w3,i)
t4,i+1 = t4,i + λi (2ci − hi − w4,i)
hi+1 = hi + λi (ci − hi)

end for

850 900 950 1000 1050 1100 1150 1200 1250 1300 1350

z(n)

y(n)

r(n)

s(n)

ŷ(n)

ŝ(n)

Fig. 2. Cropped version of the results in the ideal case. From up

to down: original data z, reference primary signal y, template r,

multiples s, estimated signal ŷ and multiples ŝ.

launched on 10000 iterations and may stop earlier at iteration
i if ‖hi+1 − hi‖ < 10−5.

The numerical results below have been obtained with

ϕk ≡ | · |, ρ̃ = µ‖ · ‖2 and µ = 0.01. Symlet wavelets of
length 8 over 3 resolution levels are used.

5.1. Ideal case

In a first set of experiments, the observations being generated

according to (1), we assume P , p′ and ǫ =

maxp′≤p≤p′+P−1,0≤n<N−1 |h
(n+1)

(p) − h
(n)
(p)| to be

known, where h denotes the “true” impulse response. We

subsequently set ǫp ≡ ǫ for defining the convex constraints

on the filters.

Results obtained considering P = 14, p′ = −7 and ǫ =
1.46 × 10−3 are displayed in Fig. 2. In this case, as the filter

length is quite large, the multiples are of low amplitude and

so, they are difficult to detect. However, the signal is satisfac-

torily recovered.
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5.2. Objective performance evaluation

To emulate actual geophysical configurations, data and tem-

plates obtained from actual seismic surveys have been com-

bined with filters of varying length (from four to twenty taps),

starting time (p′) and shape (from fully symmetric to asym-

metric). Due to amplitude and spectrum variations in actual

multiples, an absolute statistical analysis is not straightfor-

ward. Instead, we focus on relative errors with respect to

reference data, before and after multiple removal. Namely,

Fig. 3 represents pairs (with identical colors) of ratios of ℓ1
and ℓ2 norms for the initial versus final error with respect to
y. Three key observations are derived:
• pairs of error metrics (identical colors) behave consistently,
• reported errors stand below the main diagonal (dashed line),

indicating generic improvements,

• relative errors exhibit a reduction by a factor of four in av-
erage (dotted line).
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ℓ1 norm
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Fig. 3. Initial vs final relative errors.

5.3. Noisy case

In a second time, we generated again observations according

to (1) where P = 10, p′ = 0 and ǫ = 1.28 × 10−3 are still

assumed to be known, but the observed data are corrupted

with noise. Model (1) becomes then

(∀n ∈ {0, · · · , N − 1}) z(n) = s(n)+ y(n)+ b(n) (23)

where b is a realization of an additive white Gaussian noise
with zero-mean. The noise standard deviation is here chosen

equal to σ = 8.35×10−2 (SNR = 0.95 dB). The results shown
in Fig. 4 demonstrate the robustness of the proposed method

with respect to noise.

6. CONCLUSION

A new variational framework for multiple removal in seis-

mic data, when a disturbance signal template is available, has

been developed. The proposed algorithm, based on recent

advances in the theory of proximal operator, allows us to es-

timate FIR filters that vary along the time dimension. The

1020 1040 1060 1080 1100 1120 1140 1160 1180 1200
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1020 1040 1060 1080 1100 1120 1140 1160 1180 1200

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Fig. 4. Cropped version of the results in the noisy case. Top: refer-

ence signal y (blue line) and estimated signal ŷ (red line); Bottom:

multiples s (blue line) and estimated multiples ŝ (red line).

results provided by this approach appear to be very promis-

ing. In our future work, we plan to extend this method to the

2D case, so as to exploit prior information along the sensor

dimension.
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