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ABSTRACT

The effect of the ordering of independent and non-identical
observations on the average number of samples needed to
make a decision in a sequential binary hypothesis test is an-
alyzed in this paper. We show that among all permutations
of ordering of the observations, the average sample number
(ASN) is minimum for the order in which the area under the
receiver operating characteristic (ROC) curve for each of the
non-identically distributed observations is monotonically de-
creasing. The claim is verified by computing the ASN of a
generalized sequential probability ratio test (GSPRT) for dif-
ferent orderings of observations, which are independent and
non-identical Gaussian random variables, using a combina-
tion of analytical and numerical techniques.

Index Terms— Generalized SPRT, Non-i.i.d. observa-
tions, Ordering, ASN

1. INTRODUCTION

Humans collect information sequentially and make a decision
at a certain point rather than wait till the amount of informa-
tion collected exceeds some preset threshold and then make
a decision.In sequential decision making, the order in which
information is presented to a person affects the time taken to
make a correct or incorrect decision. If important information
regarding the problem posed is presented at an early stage
as opposed to a later stage, a correct decision can be made
sooner. An example of this is to consider the speed of re-
sponse of a person who is asked a question in different ways.
To demonstrate the effect of ordering of information on se-
quential decision making we use the framework of sequential
analysis with non-identical observations.

The optimal sequential test for a binary hypothesis test
with i.i.d. observations is the sequential probability ratio test
(SPRT) [1]. The ASN is calculated using Wald’s identity and
is inversely proportional to the Kullback Leibler (KL) diver-
gence between the two hypotheses. The literature in the do-
main of sequential tests for non-i.i.d. observations is less ex-
tensive as compared to that of sequential analysis assuming
i.i.d. observations. It is shown in [2], [3] that the optimal se-
quential test for binary hypothesis testing with non-i.i.d. ob-

servations is the generalized SPRT where the thresholds are
time varying. The computation of the varying thresholds and
the ASN of the GSPRT is a difficult problem. The ASN is
computed for dependent but identically distributed samples
in [4] where the dependence between the observations is a
first order Markov chain defined on a finite state space. It is
shown in [5] that two tests which are multihypothesis versions
of the SPRT (MSPRT’s) with constant thresholds, are asymp-
totically optimal in minimizing the ASN and in addition all
higher order moments of the stopping time for multihypothe-
sis testing problems with i.i.d. or non-i.i.d. observations when
the error probabilities are small. In [6] the authors prove that a
generalized SPRT using a maximum-likelihood ratio statistic
with fixed thresholds is asymptotically optimal in minimizing
the ASN for i.i.d. observations and also for the quasi-i.i.d.
case where the log-likelihood ratio is expressed as the sum of
an i.i.d. sequence and a slowly changing random sequence,
for certain class of multihypothesis testing problems.

In this paper we study and characterize the optimal order-
ing that leads to the smallest average sample size in a sequen-
tial binary hypothesis testing problem. To our best knowl-
edge there has been no work done on this problem before.
The paper is organized as follows. In section 2, the GSPRT
procedure is described. The problem statement of ordering of
observations based on ROC curve is described in section 3. In
section 4, a closed form expression is given for the ROC curve
when considering a binary hypothesis test with i.i.d. Gaus-
sian samples. Approximate expressions for the time varying
thresholds and the ASN is obtained in section 5 for the binary
hypothesis test with non-identically distributed independent
Gaussian random variables as observations. Numerical re-
sults and plots are provided in section 6 and we conclude the
paper in section 7.

2. GENERALIZED SPRT

It is well known that the optimal sequential test for a binary
hypothesis test with i.i.d. observations is the SPRT in the
sense that it minimizes the expected number of samples to be
taken to achieve error probabilities less than the prescribed
probability of miss (Pm) and probability of false alarm (Pf ).
The SPRT involves comparing the likelihood ratio (LRT) of
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all observations up to the current time instant and comparing
it with a pair of thresholds. It is described as follows:

If
∏n
k=1 l(Yk) ≥ B, decide H1 is true

If
∏n
k=1 l(Yk) ≤ A, decide H0 is true

If A <
∏n
k=1 l(Yk) < B, take another observation

where Y1, Y2, ..., Yn are the i.i.d. observations, A =
Pm

1− Pf
,

B =
1− Pm
Pf

, l(Yk) =
f(Yk|H1)

f(Yk|H0)
and f(Yk|Hi) (i = 0, 1)

is the probability density function (pdf) of the observation
conditioned on the hypothesis (i = 0, 1).
When the observations are not i.i.d., the optimal sequential
test which minimizes the expected number of samples is the
generalized SPRT [2]. It is given by the following rule:

If
∏n
k=1 lk(Yk) ≥ Bn, decide H1 is true

If
∏n
k=1 lk(Yk) ≤ An, decide H0 is true

If An <
∏n
k=1 lk(Yk) < Bn, take another observation

The thresholds here are time varying instead of being fixed
as in SPRT. The problem of finding the optimal time varying
thresholds has not been solved yet. We propose an approxi-
mate method to calculate a sequence of varying thresholds in
Section 5.

3. PROBLEM STATEMENT

Consider a binary hypothesis test with independent and non-
identically distributed observations y1, y2, y3, ... and let the
two hypotheses be denoted by H0 and H1. The ROC curve of
y1, y2 and y3 is shown in the figure below. It can be seen that
the ROC curve of y1 is higher than that of y2 which itself is
higher than that of y3.

Fig. 1. ROC curves for non-identically distributed observa-
tions y1, y2 and y3

Claim: The ASN conditioned on either hypothesis corre-
sponding to the ordering in which the area under the ROC

curve of each observation is monotonically decreasing, i.e.
E[N |Hi], i = 0, 1 is minimum among all possible orderings
of observations and is thus optimal.

An immediate corollary of this is as follows: Let the sam-
ples be sequentially observed in the order y2, y1, y3, ... and
let the corresponding ASN be E[N ′|Hi] for i = 0, 1. Then
E[N ′|Hi] > E[N |Hi] for i = 0, 1.

4. RECEIVER OPERATING CHARACTERISTIC

The ROC curve of a test is a plot of the probability of detec-
tion Pd vs. the probability of false alarm Pf such that all pairs
(Pd, Pf ) below the curve are achievable and those above are
not. Thus a test is deemed to be better than another if its ROC
curve is higher, i.e. if the area under its ROC curve is larger.

Consider the following binary hypothesis test:

H1 : Yn = A+ wn
H0 : Yn = wn

where wn ∼ N (0, σ2) is an i.i.d. process and A denotes the
strength of the signal. Let N be the number of i.i.d. observa-
tions taken to achieve a prescribed pair (Pd, Pf ). The ROC
obtained by Neyman-Pearson test can be expressed in closed
form as derived in [7] by the equation,

Pd = 1−Q(d−Q−1(Pf )) (1)

where d2 = NA2

σ2 and Q(x) is the complementary cdf of the
standard Gaussian distribution given by,

Q(x) =

∫ ∞
x

1√
2π

exp(−t2/2)dt

Thus d, which is proportional to the signal to noise ratio
(SNR) completely characterizes the ROC of this binary hy-
pothesis test. It can be clearly seen that at a particular value
of Pf , higher value of SNR results in larger Pd. Hence sam-
ples with a higher SNR will have an ROC curve that will be
higher than those with lower SNR’s.

5. PROBLEM FORMULATION

The binary hypothesis test for which we prove the claim made
in section 3 is set up as follows:

H1 : Yn = mn + wn
H0 : Yn = wn

where wn ∼ N (0, σ2) and {mn}∞n=1 is a deterministic
sequence such that mn > 0, ∀n ≥ 1 and mi 6= mj when
i 6= j, ∀i, j ≥ 1. The noise process wn is assumed to be i.i.d.
and thus the observations are independent but non-identically
distributed under H1. The ordering of the ROC curves will
thus depend on the ordering of the means of the observations
conditioned on H1. Hence according to the claim made in
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section 3, we would expect to make a decision sooner under
H1 if we observe samples with higher means in the beginning
as opposed to later.

Let li = log
(
fi(Yi|H1)
fi(Yi|H0)

)
be the log-likelihood ratio for

observation Yi. Since the observations Yi are independent,
the log-likelihood ratios li at each instant are independent of
each other as well. Let the cumulative log-likelihood ratio up
to time instant n be denoted by Ln.

Hence we have Ln = log

(
n∏
i=1

fi(Yi|H1)

fi(Yi|H0)

)
=
∑n
i=1 li

Now, li =
2miYi−m2

i

2σ2 . Hence we have E[li|H1] =
m2

i

2σ2 , E[li|H0] = −m2
i

2σ2 and V ar[li|H1] = V ar[li|H0] =
m2

i

σ2 . Thus the distribution of Ln under both hypotheses is

given by, Ln|H1 ∼ N
(∑n

i=1m
2
i

2σ2 ,
∑n

i=1m
2
i

σ2

)
and Ln|H0 ∼

N
(
−

∑n
i=1m

2
i

2σ2 ,
∑n

i=1m
2
i

σ2

)
. Note that E[li|H1] is the KL di-

vergence between hypotheses H1 and H0 of the ith sample.
Let an = log(An) and bn = log(Bn) where An and

Bn are the time varying thresholds of the GSPRT. Let the
prescribed probability of false alarm and miss for the test be
denoted by Pf and Pm respectively. We will denote the prob-
ability of making an error conditioned on H0 and H1 at stop-
ping time n by P (n)

f and P (n)
m respectively. Hence we have

P
(n)
f = P (a1 < L1 < b1, ..., an−1 < Ln−1 < bn−1, Ln ≥
bn|H0) and P (n)

m = P (a1 < L1 < b1, ..., an−1 < Ln−1 <
bn−1, Ln ≤ an|H1). We thus have the following inequalities,

P
(n)
f ≤ P (Ln ≥ bn|H0), ∀n ≥ 1 (2)

P (n)
m ≤ P (Ln ≤ an|H1), ∀n ≥ 1 (3)

Equality is achieved in (2) and (3) for n = 1 and for all
n > 1, we have a strict inequality. The error probabilities
at each stopping time can be made lesser than the prescribed
values Pf and Pm by setting

Pf =

∫ ∞
bn

g(Li|H0)dLi, ∀n ≥ 1 (4)

Pm =

∫ an

−∞
g(Li|H1)dLi, ∀n ≥ 1 (5)

where g(Li|Hj) is the pdf of the gaussian random variable
Li under hypothesis Hj for j = 0, 1. Using (4) and (5), the
thresholds can be found using the following equations:

bn =
Q−1(Pf )

√∑n
i=1m

2
i

σ
−
∑n
i=1m

2
i

2σ2
(6)

an =
Q−1(1− Pm)

√∑n
i=1m

2
i

σ
+

∑n
i=1m

2
i

2σ2
(7)

As an < 0 < bn, ∀n ∈ Z+, the series
∑∞
n=1m

2
n should

be convergent else as n → ∞, bn → −∞ and an → ∞.
Though these time varying thresholds reduce the ASN (while
ensuring that the error probabilities are below Pm and Pf ) as
compared to that using Wald’s constant thresholds, we don’t
necessarily know if these thresholds are optimal, i.e. we may
be able to find another sequence of varying thresholds which
reduce the ASN even further.

Let hi(t|Hj), for j = 0, 1 and i ≥ 1 denote the pdf of
li. Let Pn(t|Hj) = P (Ln < t|a1 < L1 < b1, ..., an−1 <
Ln−1 < bn−1, Hj) be the cumulative distribution function
(cdf) of Ln conditioned on the past observations up to n and
hypothesis Hj for j = 0, 1. Let pn(t|Hj) denote the pdf of
Ln conditioned on the past which is obtained by taking the
derivative of the cdf. To calculate pn(t|Hj) for each n > 1,
we can use the following recursion, for j = 0, 1,

p1(t|Hj) = h1(t|Hj) (8)

pn(t|Hj) =

∫ bn−1

an−1

pn−1(u|Hj)hn(t− u|Hj)du (9)

Using (8) and (9), the expected number of samples
E[N |Hj ] for j = 0, 1 can be calculated using the follow-
ing equation:

E[N |Hj ] =

∞∑
n=1

n

(∫ an

−∞
pn(t|Hj)dt+

∫ ∞
bn

pn(t|Hj)dt

)
(10)

As given in [8], the stopping time n is finite if P (n <
∞|Hj) = 1, j = 0, 1, i.e.

lim
n→∞

P (an < Ln < bn|Hj) = 0, j = 0, 1 (11)

The GSPRT is truncated at a large value of n and thus we
try to achieve (11) for a large but finite value of n. For the
thresholds calculated using (6) and (7),

P (an < Ln < bn|H1) = 1− Pm −Q
(
Q−1(Pf )−

√
cn
σ

)
(12)

where cn =
∑n
i=1m

2
i . Hence to satisfy condition (11), for

large n we need to set,
√
cn
σ

= Q−1(Pf )−Q−1(1− Pm) (13)

From (6), (7) and (13), we get, bn = an = (p2−q2)
2 as n

becomes large, where p = Q−1(Pf ) and q = Q−1(1− Pm).
But the thresholds should satisfy bn > 0 and an < 0, ∀n ≥ 1.
Thus for a small ε > 0, we need the following condition to
hold true for large but finite n

√
cn
σ

= Q−1(Pf )−Q−1(1− Pm)− ε (14)
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The value of ε should be chosen such that the upper and
lower thresholds are positive and negative respectively for all
n and the probability that the cumulative LLR up to large but
finite n stays between the thresholds is as close to 0 as possi-
ble.

For SPRT with fixed thresholds b = ln(B) and a = ln(A)
we have,

P (a < Ln < b|H1) = Q

(
a− µn
λn

)
−Q

(
b− µn
λn

)
(15)

where µn = cn
2σ2 and λn =

√
cn
σ2 . Thus to ensure that the

stopping time is finite with probability close to 1, we see from
(11) and (15) that µn � b should be satisfied as n → ∞.
Now if the series

∑∞
n=1m

2
n is divergent for a particular or-

dering, it will be divergent for all orderings since each term
in the sequence {m2

n}∞n=1 is positive. Hence for all orderings
we have,

lim
n→∞

P (a < Ln < b|H1) = lim
n→∞

Q(
aσ
√
cn
−
√
cn
2σ

)

− lim
n→∞

Q(
bσ
√
cn
−
√
cn
2σ

)

= Q(−∞)−Q(−∞)

= 0 (16)

Hence we have finiteness of stopping time with probability
1 for all orderings. An example of such a series is mn =√
d+ sn,∀n ≥ 1, where d > 0 is a constant, sn > 0,∀n ≥ 1

and
∑∞
n=1 sn is a convergent series. Note that Lyapunov’s

condition is satisfied for such a series for δ = 2 and thus by
Lyapunov’s variant of the central limit theorem (CLT) [9], the
cumulative LLR is asymptotically normal. If the series is not
convergent as in the case of deriving varying thresholds, the
cumulative LLR is not asymptotically normal.

The ordering of observations based on their ROC curves
is same as that based on the KL divergence between hypothe-
ses H1 and H0 since they both are proportional to the SNR of
each observation. In general it is more feasible to get closed
form expressions for the KL divergence rather than the ROC
curves. In the future we will derive conditions under which
the claim can be proved for the case in which the observa-
tions are drawn from a non-Gaussian probability distribution.
In this generalized case, the orderings will be defined as or-
derings of the KL divergence between the two hypotheses of
each observation.

6. RESULTS AND DISCUSSION

In this section we present numerical results for the problem
formulated in the previous section. Consider the sequence
{mn}∞n=1 to be a monotonically decreasing sequence with a
geometric decay, i.e. mn = rn−1, n ≥ 1, where 0 < r < 1
is the rate of decrease of the sequence. For convenience we

call this sequence as the reference sequence. Thus the differ-
ent orderings of observations can be seen as permutations of
elements of the reference sequence. The pdf of the stopping
time and the ASN for different orderings is calculated using
(8), (9) and (10) using MATLAB. In particular the integrals
in (9) and (10) are computed using the trapezoidal rule with
1000 points in each of the intervals (−∞, an], (an, bn) and
[bn,∞) for all n ≥ 1. To satisfy condition (14), noise power
σ2 = 0.4 and r = 0.96 is chosen for Pm = Pf = 10−3.
As there are millions of orderings possible we cannot pos-
sibly compute the ASN for all of them. In addition it turns
out that the ASN does not change much for small offsets
in the orderings. Thus we consider the interesting case of
p − reverse orderings for p ≥ 1. A p − reverse ordering
{m′n}∞n=1 is defined such that m′n = mp−n+1 for 1 ≤ n ≤ p
and m′n = mn,∀n > p. Note that the 1− reverse sequence
is same as the reference sequence.

Fig. 2. Average sample size of GSPRT under hypothesis H1

for different p − reverse orderings

It can be seen from figure 2 that the ASN for the refer-
ence sequence is minimum and is equal to 5.4277. The sec-
ond least ASN (equal to 5.4376) among all orders is obtained
for 2 − reverse ordering. The ASN increases monotonically
when p increases. But a significant increase i.e. at least 2 sam-
ples more than the minimum ASN, only occurs when p > 10.
The rate of change of ASN among orderings for smaller val-
ues of p is less due to the slow rate of change of the sequence
mn since r is chosen to be close to 1. If the rate of decrease
of the reference sequence is increased, i.e. if r is decreased to
enlarge the difference in the ASN among orderings, the prob-
ability of termination of the truncated test will decrease and
thus there is a trade-off between increasing probability of ter-
mination of the GSPRT and increasing the change in ASN for
different orderings.

In order to ensure that the stopping time is finite with
probability almost equal to 1 while using SPRT, we set r =
0.98 and retain the same values for other parameters. Figure
3 shows similar trend in the increase of ASN with p using
SPRT as compared to that using GSPRT. It can be seen that
even for a larger value of r, the ASN using SPRT is more than
that using GSPRT for all orderings.

Figure 4 shows the pdf of the stopping time for the refer-
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Fig. 3. Average sample size of SPRT under hypothesisH1 for
different p − reverse orderings

Fig. 4. Probability density function of stopping time for 3 dif-
ferent orderings obtained by analytical calculations and sim-
ulations

ence sequence and p − reverse orderings when p = 10 and
p = 20 using GSPRT. It can be observed that the pdf for
all 3 orderings obtained by computing the recursive integrals
given by (10) and (11) is almost the same as that obtained
by performing Monte Carlo simulations with 50, 000 itera-
tions. For higher values of p, the pdf is more spread out due
to increased variance and its concentration around the larger
values of stopping time is also more.

A plot of the lower (an) and upper (bn) thresholds for the
reference sequence is shown in figure 5. The thresholds will
be different for different orderings but for every ordering they
will converge to the same value at a large value of n.

7. CONCLUSION AND FUTURE WORK

In this paper we provide an analysis of the influence of or-
dering of non-identical and independent observations on the
expected sample size in a sequential binary hypothesis testing
problem. When the observations are independent and non-
identically distributed Gaussian random variables, we showed
that among all orderings, ASN is minimized when the sam-
ples are observed in a order such that the area under the ROC
curve of each sample is monotonically decreasing. As part

Fig. 5. Upper and Lower thresholds for the reference se-
quence

of future work we will consider the case in which the obser-
vations are non-Gaussian random variables and derive condi-
tions under which our claim remains true. We also want to
extend these results to sequential decision making by human
beings when cognitive biases interfere with the decision pro-
cedure.
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