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ABSTRACT

In this work, we investigate the application of the recently in-

troduced signal decomposition method known as robust prin-

cipal component analysis (RPCA) to the problem of wave

separation in seismic data. The motivation of our research

comes from the observation that the elements of the decom-

position performed by RPCA can be associated with partic-

ular structures that often arise in seismic data. Results ob-

tained considering two different situations, the separation of

crossing events and the separation of diffracted waves from

reflected ones, confirms that RPCA is a promising tool in

seismic signal processing, outperforming the classical singu-

lar value decomposition (SVD) and the extension of the SVD

based on independent component analysis in most cases.

Index Terms— Seismic signal processing, robust princi-

pal component analysis, wave separation, SVD.

1. INTRODUCTION

The separation of the different types of waves present in seis-

mic data is a very relevant task in seismic signal process-

ing [1]. This is specially true when seismic prospecting is

considered, since a reliable interpretation of individual waves

is crucial to identification of key geological structures in the

subsurface under analysis. For instance, the separation of

diffracted waves from reflections can be of use to identify

stratigraphic traps, such as geological faults, in which hydro-

carbons is often accumulated [2].

Classically, wave separation (or event separation) is per-

formed by filtering methods such as the 2-D Fourier trans-

form (or f-k filtering, as is known among geophysicists) and

the Radon transform [3]. A third route to wave separation,

which is the one we are interested in here, is the Singular

Value Decomposition (SVD) [4]. This method has been inten-

sively applied in different contexts, such as wavefield separa-

tion of normal moveout (NMO)-corrected common-midpoint

(CMP) gathers, residual static corrections [5], diffraction sep-

aration [6] and ground-roll attenuation [7].

Although computationally efficient, the use of SVD to

perform wave separation has some limitations. For instance,

the estimation obtained by the SVD may not be good when

there are crossing events, as well as the presence of horizontal

and non-horizontal events in the same data. Such a drawback

can be attributed [8] to the fact that SVD imposes orthogonal-

ity to all the elements present in the decomposition, which is

implicitly equivalent to enforcing decorrelation in the separa-

tion process. To overcome these limitations, extensions of the

SVD have been proposed. In [8], for instance, a modified ver-

sion of the SVD based on Independent Component Analysis

(ICA) was introduced. In this approach, higher-order statis-

tics of the data are also taken into account, which results in a

better performance both in wave separation [8] and signal-to-

noise enhancement of pre-stack seismic gathers [9].

In this work, we aim to extend the SVD approaches in

seismic signal processing upon the incorporation of the re-

cently introduced decomposition framework known as robust

principal component analysis (RPCA) [10, 11]. Roughly

speaking, RPCA aims at decomposing the observed multidi-

mensional data as a sum of a low-rank matrix and a sparse

matrix. The key aspect here is that such a decomposition

perfectly matches some situations typical of wave separa-

tion. More specifically, we compare RPCA with SVD and

the SVD-ICA methods in two situations of great interest in

seismic signal separation.

The paper is organized as follows: In Section 2, we in-

troduce the problem and briefly describe the three separation

strategies considered in our work. In Section 3, a set of nu-

merical experiments illustrates our proposed procedures. Fi-

nally, Section 4 states our conclusions.

2. WAVE SEPARATION METHODS

2.1. Preliminaries: seismic data

Seismic data comprise an ensemble of traces, i.e., signals

recorded in time at a given receiver location, due to a given
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source location. The receivers are typically an array of sen-

sors, which can be geophones, in land acquisition, or hy-

drophones, in marine acquisition. The set of traces (referred

to as a seismogram) can be represented by an n × m space-

time matrix, X, where m represents the number of traces and

n the number of time samples for each trace. An example of

seismogram is depicted in Figure 1. In this example, wave

separation methods can be applied to separate a linear event

from a nonlinear one. In the sequel, we briefly describe the

three separation methods that will be considered in this work.

2.2. SVD

The SVD decomposes the data X as follows

X = UDV
T =

r∑

i=1

σiuiv
T
i , (1)

where r is the minimum between n and m, U and V are

square orthogonal matrices, and D is a rectangular diagonal

matrix of size m × n. The vectors ui and vi correspond to

the i-th column of the matrices U and V, respectively. In

seismic signal processing, these vectors are known as wavelet

and propagation vectors, respectively [1]. Moreover, the ma-

trix uiv
T
i is usually called the i-th eigen-image of X [5], ac-

counting for the influence of the i-th eigen-image on the de-

composition weighted by σi, which corresponds to the i-th

singular value of X. The SVD of a matrix is closely related

to principal component analysis (PCA), a classical multivari-

ate statistics decomposition tool.

The SVD to process seismic data is designed to extract

events characterized by a high degree of trace-to-trace cor-

relation [5]. This is possible because such events tend to

be concentrated within the signal subspace, i.e., the eigen-

images associated with the highest singular values. Therefore,

if one considers only these eigen-images when reconstructing

the original data, it becomes possible to estimate special, for

instance, horizontal events. SVD can also be used to sepa-

rate linear events that are not horizontally aligned. This can

be done by performing a prior time correction to the seismic

section in order to align the desired event [5].

2.3. SVD-ICA

One of the limitations of SVD in seismic signal processing is

that it imposes the matrices U and V to be orthogonal. While

the orthogonality of the wavelet vectors is an acceptable as-

sumption, there is no physical reason for which the propaga-

tion vectors must be orthogonal [8]. As a consequence, en-

forcing such unnatural constraint usually introduces artifacts

in the estimated subspaces.

The SVD-ICA method was developed [8] to overcome the

aforementioned limitation. The first step in SVD-ICA is to

apply the ordinary SVD to the data X. Then, an ICA method

is applied to the orthogonal matrix U with the aim of adjust-

ing an orthogonal matrix B in such a way that the columns

of the matrix Ũ = UB become as statistical independent as

possible. This can be done, for instance, by a joint diagonal-

ization procedure of the data cumulant matrices.

After the application of ICA, and consideration of the or-

dinary SVD expression, there is a rearrangement of terms so

the original data can be expressed as follows:

X = ŨD̃Ṽ
T =

r∑

i=1

σ̃iũiṽ
T
i . (2)

There are two important differences between this new decom-

position and the one of SVD. Firstly, the wavelet vectors are

now statistically independent, instead of being only decorre-

lated — this is possible because ICA considers the higher-

order statistics of the data. Secondly, due to the performed

data rearrangement, the matrix Ṽ is no longer orthogonal.

SVD-ICA can also be used to separate linear events from

other events and from noise. This can be achieved by consid-

ering the first eigen-images related to the decomposition (2).

2.4. Robust PCA

Recently, considerable attention has been paid to a novel de-

composition framework tailored to the case in which the data

comprises a low-rank term and a sparse part [10, 11]. This

approach can be seen as a robust extension of the SVD/PCA

framework. Indeed, as opposed to PCA, these new robust

PCA (RPCA) techniques are able to extract the low-rank in-

formation even when that component is corrupted by sparse

errors of large magnitude. This good feature is seen to lead

to impressive results in problems such as video surveillance

and face recognition [10], and singing-voice separation from

monaural records [12].

In mathematical terms, the decomposition performed in

RPCA can be expressed as follows

X = L+ S, (3)

where L is a low-rank matrix and S is a sparse matrix, mean-

ing to be mainly composed of null elements. One of the inter-

esting aspects of RPCA concerns the existence of theoretical

results assuring the uniqueness of the decomposition (3) —

this is extremely useful in a signal separation context. Candès

et al. [10] have shown that if the data is indeed composed of

a low-rank and a sparse matrix terms, then, under mild as-

sumptions, these two terms can be recovered by solving the

following optimization problem:

minimize
L,S

||L||∗ + λ||S||1

subject to L+ S = X,
(4)

where ||L||∗ denotes the nuclear norm of L, i.e., the sum of

the singular values of that matrix, and ||S||1 denotes the sum
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of the absolute values of all elements of S. An interesting as-

pect here is that the problem (4) is convex, which opens the

way for the application of very efficient optimization algo-

rithms.

Our motivation to apply the RPCA to decompose seismic

data comes from the fact that, very often, the seismogram is

composed by low-rank structured parts (as in the case of hor-

izontal reflections) and structured parts in which the rank is

not necessarily low, e.g. nonlinear events such as diffractions.

In practice, seismic signals are corrupted with noise,

which is usually modeled as a white Gaussian process and,

as such, neither low rank nor sparse. A way to overcome that

difficulty is to introduce an additional term N in the decom-

position (3), so as to accommodate the noise term. Namely,

we set

X = L+ S+N. (5)

The above formulation is referred to as noisy robust PCA.

In the literature, one can find several algorithms to imple-

ment the noisy PCA decomposition. Here, we will consider

the Go Decomposition (GoDec), recently introduced in [13].

The GoDec algorithm considers the following optimization

problem:

minimize
L,S

||N||2F = ||X− L− S||2F

subject to rank(L) ≤ j

card(S) ≤ k,

(6)

where ||N||F denotes the Frobenius norm of N. With respect

to other noisy RPCA methods, such as the Bayesian approach

proposed in [14], the GoDec algorithm provides a good solu-

tion in terms of computational effort, which is a crucial fea-

ture in seismic signal processing.

3. RESULTS

To evaluate the RPCA decomposition in the context of seis-

mic signals, we carry out numerical experiments in two situa-

tions that often arise in practice: separation of crossing events

and separation of diffractions and reflections.

3.1. Separation of crossing events

We apply the three methods discussed before to separate the

two close events depicted in Figure 1. The seismic data in

this case is corrupted with additive white Gaussian noise, the

signal-to-noise ratio (SNR) being 14dB. The number of traces

is m = 40 and the number of samples is n = 700.

Figure 2 shows the first eigen-image obtained by the SVD

method and by the SVD-ICA method, as well as the low-rank

matrix L provided by the GoDec algorithm (we set j = 1
in this case). One can note that, while the SVD-ICA method

was able to retrieve the horizontal event, the estimation pro-

vided by the ordinary SVD was corrupted by a strong artifact,
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(b) Zoomed version of the observed

noisy data.

Fig. 1. Data considered in the first experiment.

which stems from the non-horizontal event. In the low-rank

term of RPCA, we can also see an artifact created by the non-

horizontal event, but with less amplitude than the one found

using SVD.

Figure 3 shows the remaining terms obtained in each de-

composition, that is, the remaining eigen-images (noise sub-

space) in SVD and SVD-ICA, as well as the sparse term S

provided by the GoDec. It is worth noticing that, while in

both SVD and SVD-ICA the retrieved data contain the non-

horizontal event together with a relevant amount of noise, the

sparse term of RPCA provided a much less noisy estimation

of the non-horizontal event.

3.2. Separation of diffractions and reflections

We now consider the problem of separating events having a

hyperbolic shape from horizontal events. More specifically,

we consider in a zero-offset seismic configuration (namely

coincident source-receiver pairs), the responses of five point

diffractors, a broken horizontal reflection (which produces,
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Fig. 2. First experiment: Low-rank subspaces.
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Fig. 3. First experiment: remaining eigen-images of SVD and

SVD-ICA, and the sparse term provided by RPCA.

besides the reflection, also an edge diffraction) and a full hor-

izontal reflector (which produces a horizontal reflection). One

of the point diffractors lies on top of the horizontal reflector.

The signals (events) considered in this experiment are pre-

sented in the seismogram of Figure 4, which contains m =
300 traces, each of them with n = 300 samples. The SNR is

20dB. One particular characteristic that makes this problem

challenging is that the diffractions, which are of hyperbolic

shape, have clearly smaller amplitudes than that of reflections.

Moreover, the amplitude is not constant along the hyperbolas.
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Fig. 4. Second experiment: noisy data.

Our results show that the SVD and the RPCA were able

to perfectly retrieve the horizontal events in their rank-two

subspaces. However, the estimation provided by the SVD-

ICA presented some small horizontal artifacts (the figures are

omitted here due to the lack of space).

Figure 5 shows the noise subspace associated with the

SVD and SVD-ICA methods and the sparse matrix ob-

tained by RPCA. We note that SVD-ICA retrieved the non-

horizontal events corrupted with noise and horizontal arti-

facts, which were mainly created by the horizontal events. In

both SVD and RPCA, though, there was no horizontal arti-

facts. However, the estimation of the diffractions provided by

RPCA are clearly less noisy than the ones obtained by SVD.

4. CONCLUSIONS

We investigated the application of an RPCA method and

the GoDec algorithm, to separate different signals (events)

present in seismic data. By means of numerical experiments,

we observed that RPCA is a valuable tool in this context.

RPCA performed better than SVD and SVD-ICA in the task

of separating weak hyperbolic events from horizontal ones in

noisy data. In the same way, in a second experiment related to

crossing events, RPCA provided the best estimation of a non-

horizontal event, as well as a better estimation of a horizontal

event as compared to SVD, although SVD-ICA exhibited a

better performance in this case. Besides the good perfor-

mance of RPCA, these algorithms are usually more efficient

in terms of computational complexity than SVD-ICA.
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Fig. 5. Second experiment: remaining eigen-images of SVD

and SVD-ICA, and the sparse term provided by RPCA.
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