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ABSTRACT

H∞ filtering is more and more used in the field of recursive es-
timation in signal processing. The purpose of this communication is
to compare Kalman filtering and H∞ filtering by considering their
Ricatti-type equations. Our contribution is twofold: firstly, we show
that the H∞ filter can be seen as a Kalman filter with a model-noise
covariance matrix that depends on the noise attenuation level and
varies in time. Hence, this can explain the convergence properties of
the H∞ filter when estimating parameters. The convergence and ac-
curacy properties of both Kalman and H∞ filters are then illustrated
by the estimation of a carrier frequency offset in a mobile communi-
cation system.

Index Terms— Kalman filter, extended Kalman filter, H∞ filter,
extended H∞ filter, carrier frequency offset.

1. INTRODUCTION

In the field of recursive estimation, Kalman filtering (KF) and its
variants have played a key role for more than 40 years. They
have been used in a wide range of applications, from radar pro-
cessing to GPS navigation, from biomedical application to speech
enhancement. When dealing with a non-linear system, the extended
Kalman filter (EKF) consists in analytically propagating the estima-
tion through the system dynamics, by means of a first-order Taylor
expansion, around the last state vector estimate, of the functions
defining the state-space representation of the system. However, as
the approximation may not be sufficient to describe the non-linearity,
the EKF may sometimes diverge. To solve this problem, a second-
order linearization can be considered and leads to the second-order
EKF (SOEKF) [1]. Another solution is to use the iterative extended
Kalman filter (IEKF). In that case, the measurement model is lin-
earized around the updated state vector, instead of the predicted state
vector. Then, the process is iterated until the state vector estimate
does not change much.
However, the above approaches require the computation of the
Jacobian and the Hessian matrices for the first-order and the second-
order linearizations respectively. Therefore, the sigma-point Kalman
filter (SPKF) [2], namely the unscented Kalman filter (UKF) and the
central difference Kalman filter (CDKF), can be considered.1 The

1In that case, the state distribution is approximated by a Gaussian distri-
bution, which is characterized by the so-called sigma points. Then, the sigma

UKF is based on the unscented transformation whereas the CDKF
is based on the second-order Sterling polynomial interpolation for-
mula. Note that brand new alternatives such as quadrature Kalman
filter and cubature Kalman fiter could be also considered.
To relax the assumptions on the model, interacting multiple model
of the 2nd and 3rd generations using EKF and its variants can be
considered.
Nevertheless in the above approaches, the additive noise and the
model noise must be white, uncorrelated and Gaussian. To relax the
Gaussian assumption on the additive noise and the model noise, par-
ticle filter can be used. However, despite its popularity it is not well
suited when estimating fixed parameters. In addition the computa-
tional cost may be high. As an alternative, H∞ filter is designed to
be robust against uncertainties. Its purpose is to minimize the peak
error power in the frequency domain whereas the KF minimizes the
average error power [3]. No Gaussian assumption on the additive
noise and the model noise in the state-space representation of the
system is required. The H∞ approach was introduced in the field of
control in 1981 [4]. For the last12 years, several studies based on a
Ricatti-type equation have been conducted by the signal processing
community. Thus in [5], instead of using a KF, Shenet al. suggest
using an H∞ filter to enhance a speech signal disturbed by an addi-
tive noise and recorded by a single microphone. For this purpose,
the signal is assumed to be modeled by an AR process. However, the
AR parameters are unknown and hence need to be estimated. Shen
et al. propose to estimate them directly from the noisy observations
by using a second H∞ filter. However, the resulting AR parameter
estimates are biased. To avoid this bias problem in [5], Labarreet
al. [6] suggest estimating both the AR model and its parameters.
Although this leads to a non-linear estimation issue, they have de-
veloped a structure based on two mutually interactive H∞ filters.
The first one aims at estimating the AR model, while the second one
updates the estimation of the AR parameters. In addition, in [7], the
authors take advantage of the two mutually-interactive H∞ filters
based approach to jointly estimate the fading channel and its AR
parameters. However, the authors do not obtain better performance
than a KF based method.
Researchers have taken advantage of the similarity (i.e. the Ricatti-
type equation) between KF and H∞ filtering to address the H∞ filter
based non-linear estimation issue in a more general case. Three main

points are propagated through the non-linear system. A weighted combina-
tion of the resulting values makes it possible to estimate the mean and the
covariance matrix of the transformed random variable.
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approaches have thus emerged:
1) Initial works about the “extended H∞ filter” (E-H∞) were con-
ducted by Burl [8]. Like the EKF, it consists of a first-order lin-
earization around the last available estimation of the state vector.
Various authors have used the E-H∞ filter. Thus, Giremuset al.
[9] have studied its relevance in the field of the global positioning
system (GPS) navigation. However, the authors do not obtain no-
ticeable improvements in terms of positioning error in comparison
with KF.
2) Like SOEKF, the second-order extended H∞ filter has been re-
cently proposed in [10].
3) The “unscented H∞ filter” [11] is implemented by embedding the
unscented transformation into the “E-H∞” architecture. According
to the authors, the unscented H∞ filtering can be carried out by
using the statistical linear error propagation approach [12]. Like
the UKF, the unscented H∞ filter avoids the linearization step by
using an unscented transformation. It is used to approximate the
matrices that are involved in the definition of the H∞ gain. In [13],
the unscented H∞ filter provides an initial alignment of an inertial
navigation system. The authors show that H∞ filtering approach is
an ”effective” method when the measurement noise is colored.
Note that to relax the assumptions on the model, interacting multiple
model based on H∞ filter has been proposed in [14].

In this paper, our purpose is to compare the H∞ filter and the KF
in the linear case when estimating model parameters, by comparing
the Ricatti equations of both algorithms. To our knowledge, there
is no work dealing with this kind of comparison. More particularly
we show that H∞ filtering can be seen as KF with a different model
noise covariance. This hence explains the performance of the H∞

filter and its convergence properties. Note that the result we obtain
can be easily derived in the non-linear case when using the EKF and
the E-H∞.
The paper is organized as follows: In section 2, we recall the state
space representation of the system required by KF and H∞ filtering.
Section 3 is dedicated to the comparative study between the Kalman
filter and the H∞ filter. Finally section 4 gives an illustration.
In the followingIN is the identity matrix of sizeN .

2. ABOUT THE STATE SPACE REPRESENTATION, THE
KF AND THE H ∞ FILTER

KF is based on a state-space representation of the system and uses
two equations to describe the system, when the state-space equations
are linear:

x(n) = Φ(n− 1)x(n− 1) + Γw(n) (1)

y(n) = Ψ(n)x(n) + b(n) (2)

wherex(n) is the state vector of sizeU at timen andy(n) is the
measurement vector of sizeK at timen. The model noisew and the
observation noiseb are uncorrelated white zero-mean Gaussian vec-
tors. In this paper the covariance matrices ofw andb are assumed to
beQ = σ2

wIU andR = σ2

b IK respectively. In addition,Φ(n− 1)
is the transition matrix of sizeU × U from timen − 1 to n, Γ is
the input gain matrix of sizeU × U andΨ(n) is the measurement
matrixK × U at timen.

In a H∞ setting, given the state-space model in (1) and (2), let
us introduce a third state-space equation to focus on a linear combi-
nation of the state-vector components:

z(n) = Lx(n) (3)

whereL is a linear transformation operator that can be either a ma-
trix of sizeU × U or a row vector of sizeU . z(n) is hence a vector
or a scalar.
Given (1)-(3), H∞ filtering provides the estimation of the state vec-
tor, by minimizing the H∞ norm of the transfer operator that maps
the discrete-time noise disturbances to the estimation error, as fol-
lows:

J∞ = sup

∑Nob−1

n=0
e(n)2

V−1
∑Nob−1

n=0
‖b(n)‖2 +W−1

∑Nob−1

n=0
‖w(n)‖2

(4)
whereNob denotes the number of available observations,e(n) =
z(n) − ẑ(n), andV andW are positive weighting matrices tuned
by the practitioner to achieve performance requirements.

To avoid the difficulties in minimizing (4), the following sub-
optimal H∞ problem is usually considered:

J∞ < Ξ2 (5)

whereΞ2 is the prescribed noise attenuation level.
At that stage,P∞(n+1|n) satisfies the following Riccati equa-

tion for theH∞ filter:

P
∞(n+ 1|n) = Φ(n)P∞(n|n)ΦH(n) + ΓWΓ

H

= Φ(n)P∞(n|n− 1){IU (6)

−
[

ΨH(n) L
H

]

M
−1

[

Ψ(n)
L

]

×P
∞(n|n− 1)}ΦH(n) + ΓWΓ

H

whereM is defined in (7) at the top of the next page.
When using the H∞ filter, the state vector can be estimated re-

cursively as follows:

x̂(n|n) = x̂(n|n− 1) +K
∞(n)ỹ(n) (8)

wherex̂(n|n − 1) and x̂(n|n) are respectively thea priori anda
posterioriestimations of the state vector at timen andK∞(n) is the
H∞ filter gain defined as:

K
∞(n) = {Pxy∞(n)}{Pyy∞(n)}−1 (9)

wherePyy∞(n) satisfies:

P
yy∞(n) = Ψ(n)P∞(n|n− 1)ΨH(n) +V (10)

andPxy∞(n) is:

P
xy∞(n) = P

∞(n|n− 1)ΨH(n) (11)

Equ. (6) is true provided that:

P
∞(n+ 1|n)−1 +Ψ

H(n)Ψ(n)− Ξ−2
L

H
L > 0 (12)

3. KF VS H∞ FILTERING

In the following, K(n) denotes the Kalman gain. In addition,
P(n|n) = (IU −K(n)Ψ(n))P(n|n− 1) andP(n|n− 1) denote
thea posteriorianda priori error covariance matrices when using a
KF.
Remark:for the sake of space, we do not recall the equation of
Kalman filtering as they are well known.
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M =

[

V 0

0 −Ξ2IU

]

+

[

Ψ(n)
L

]

P
∞(n|n− 1)

[

ΨH(n) L
H

]

=

[

Ψ(n)P∞(n|n− 1)ΨH(n) +V Ψ(n)P∞(n|n− 1)LH

LP∞(n|n− 1)ΨH(n) LP∞(n|n− 1)LH − Ξ2IU

] (7)

M
−1 =

[

IK −KH(n)
0 IU

] [

{Pyy(n)}−1 0

0 Υ−1

] [

IK 0

−K(n) IU

]

= W(n)X(n)Y(n) (19)

Let us first assume that:

P
∞(n|n− 1) = P(n|n− 1) (13)

and
L = IU (14)

In addition, as it is often done when dealing with H∞ filter in signal
processing, let us setW andV to Q andR respectively. This
implies thatPyy∞(n) introduced in (10) is equal to the innovation
covariance matrixPyy(n) when using KF:

P
yy∞(n) = P

yy(n) = Ψ(n)P(n|n− 1)ΨH(n) +R (15)

Then, the H∞ and Kalman gains are equal:

K
∞(n) = K(n) = P(n|n− 1)ΨH(n)(Pyy(n))−1 (16)

Then, let us compareP∞(n + 1|n) andP(n + 1|n). For this
purpose, let us use (6) where the matrixM must be inverted. Among
the approaches to invertM such as the matrix inversion lemma, we
suggest using the one based on the Schur complement [15] for the
sake of simplicity2. Thus, let us defineΥ(n) the Schur complement
of Pyy∞(n) in M as follows:

Υ(n) = {P∞(n|n− 1)− Ξ2
IU}

− P
∞(n|n− 1)ΨH(n){Pyy∞(n)}−1

×Ψ(n)P∞(n|n− 1) (17)

Given (13) and (15) and the relation betweenP(n|n − 1) and
P(n|n), one obtains:

Υ(n) = P(n|n− 1)

− {P(n|n− 1)ΨH(n){Pyy(n)}−1}Ψ(n)

×P(n|n− 1)− Ξ2
IU

= P(n|n− 1)−K(n)Ψ(n)P(n|n− 1)− Ξ2
IU

= P(n|n)− Ξ2
IU (18)

2M =

[

A B

C D

]

, then M−1
=

[

IK −A−1B

0 IU

] [

A−1 0

0 S−1

] [

IK 0

−CA−1 IU

]

whereA is a matrix of sizeK × K, B is a matrix of sizeK × U , C is a
matrix of sizeU ×K, D is a matrix of sizeU × U , S = D−CA−1B is
the Schur complement ofA in M and0 is a zero matrix.

Then,M−1 can be expressed as the product of three matrices,
the coefficients of which are defined from the coefficients ofM and
the Schur complementΥ(n). See (19) at the top.

At that stage, given (19), we can rewrite the Riccati recursion
(6) as:

P
∞(n+ 1|n) = Φ(n)P(n|n− 1)ΦH(n) + ΓQΓ

H

−Φ(n)P(n|n− 1)
[

ΨH(n) IU
]

W(n)X(n)Y(n)

×

[

Ψ(n)
IU

]

P(n|n− 1)ΦH(n)

= Φ(n)P(n|n− 1)ΦH(n) + ΓQΓ
H (20)

−Φ(n)
[

P(n|n− 1)ΨH(n) P(n|n)
]

×

[

{Pyy(n)}−1 0
0 Υ−1

] [

Ψ(n)P(n|n− 1)
P(n|n)

]

Φ
H(n)

Using (18), this leads to:

P
∞(n+ 1|n) = Φ(n)P(n|n− 1)ΦH(n) + ΓQΓ

H

−Φ(n)
[

P(n|n− 1)ΨH(n){Pyy(n)}−1 P(n|n)Υ−1
]

×

[

Ψ(n)P(n|n− 1)
P(n|n)

]

Φ
H(n) (21)

=Φ(n)P(n|n− 1)ΦH(n)

−Φ(n)K(n)Ψ(n)P(n|n− 1)ΦH(n)

−Φ(n)P(n|n)Υ−1
P(n|n)ΦH(n) + ΓQΓ

H

=Φ(n)P(n|n)ΦH(n)−Φ(n)P(n|n){P(n|n)− Ξ2
IU}

−1

×P(n|n)ΦH(n) + ΓQΓ
H

Hence, the solution of the Riccati equation when using the H∞ filter
satisfies:

P
∞(n+ 1|n) = Φ(n)P(n|n)ΦH(n)

+Q
Ξ(n) + ΓQΓ

H (22)

= Φ(n)P(n|n)ΦH(n) +Q
Ξw

where

Q
Ξ(n) = −Φ(n)P(n|n){P(n|n)− Ξ2

IU}
−1

P(n|n)ΦH(n)
(23)

Given (22), one has:

P
∞(n+ 1|n) = P(n+ 1|n) +Q

Ξ(n) (24)

Therefore, the H∞ filter can be seen as a KF with a model-
noise covariance matrix equal toQΞw = Q

Ξ(n) + ΓQΓH

123



= −Φ(n)P(n|n){P(n|n)− Ξ2IU}
−1P(n|n)ΦH(n) + ΓQΓH .

For parameter tracking, the larger the coefficients of the state-
noise covariance matrix are, the easier it is to track the parameter
variations, especially when the parameters are subject to abrupt
variations. Nevertheless, the larger they are, the larger the variance
of the estimated parameters over time is.
To analyze how the H∞ filter behaves in comparison with KF, let us
introduce the eigenvalue decomposition ofP(n|n):

P(n|n) = G













λ1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 λU













G
−1

where{λu}u∈{1,2,...,U} are the eigenvalues ofP(n|n). Hence, one
has:

P(n|n)− Ξ2
IU = G













λ1 − Ξ2 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 λU − Ξ2













G
−1

Therefore:

Q
Ξ(n) = Φ̄(n)

















− λ1
2

λ1−Ξ2 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0

0 · · · 0 − λU
2

λU−Ξ2

















(Φ̄(n))H

(25)
whereΦ̄(n) = Φ(n)G and{− λu

2

λu−Ξ2 }u∈{1,2,...,U} are the eigen-

values ofQΞ(n). It should be noted that whenΞ tends to+∞,
Q

Ξ(n) tends to be a zero matrix and
P∞(n+ 1|n) tends toP(n+ 1|n).
If Ξ2 > λu, for u ∈ {1, 2, . . . , U}, QΞ(n) is a positive-definite
matrix. The solution to the Ricatti equation for the H∞ filter can be
seen as an upper bound of the Kalmana priori error covariance ma-
trix. The same kind of consideration can be done when comparing
the EKF and the E-H∞.

4. ILLUSTRATION

In this section, we carry out a comparative study between variants
of the KF and the H∞ filter to estimate the carrier frequency offset
(CFO) in mobile communication. Indeed, despite the great success
of the code division multiple access (CDMA) as a multiple access
technique, the current trend is to use the orthogonal frequency divi-
sion multiple access (OFDMA). In that case, the input data stream
is split into a number of streams that are transmitted in parallel over
a large number of orthogonal subcarriers. The frequency-selective
fading over the entire bandwidth of the transmitted signal has hence
the advantage of being converted in frequency-flat fading over each
subcarrier. These schemes are particularly well adapted to mobile
wireless communication to provide high-data rate services.
However, there are two unwanted phenomena. 1/ the channel re-
mains unknown and hence has to be estimated. 2/ the relative
transmitter-receiver motion and a difference between the local-
oscillator (LO) frequencies at the transmitter and the receiver lead
to a CFO. These CFOs that affect the received signal no longer

guarantee orthogonality between subcarriers. To avoid the resulting
intercarrier interference (ICI), a CFO estimation and correction step
must be introduced at the receiver by using a training sequence (i.e.
a sequence known both at the transmitter and the receiver).
In what follows, an orthogonal frequency division multiple access
(OFDMA) IEEE 802.16 WirelessMANTM uplink system composed
of U = 4 users sharingK = 128 subcarriers is considered. A trans-
mission over a Rayleigh slow-fading frequency-selective channel
composed ofLu = 3 ∀u multipaths is supposed and a cyclic prefix
Ng = K/8 ≥ max

u
(Lu) is added to the OFDMA symbol. BPSK

is used to modulate the information bits. The carrier frequency is at
fc = 2.6GHz and the bandwidth is set to
W = 20MHz. The users’ normalized carrier frequency offset
(CFO) errors are set toǫu = 0.02 ∀u. Then, let us introduce

SNR= 10log( σ2

u

σ2

B

), whereσ2

u is the mean power of the received

signal from theuth user.
Let us define the vectorǫ of size U and the vectorh of size
L =

∑U

u=1
Lu by storing the CFOs and the channel state infor-

mations (CSIs) of theU users in the system as follows:

ǫ = [ǫ1, ǫ2, . . . , ǫu, . . . , ǫU ] (26)

h = [h1,h2, . . . ,hu, . . . ,hU ] (27)

wherehu = [hu(0), hu(1), . . . , hu(l), . . . , hu(Lu − 1)].
Let us define the vectorx(n) of sizeU = U +2L, which is the state
vector of the system:

x(n) =
[

ǫ(n) Re {h(n)} Im {h(n)}
]T

(28)

Now, let us introduce the state-space representation of the system:
State equation:

x(n) = x(n− 1) +w(n) ∀ n ∈ [−Ng,K − 1] (29)

Measurement equation:

R(n) =
U
∑

u=1

ej2π
ǫun

K

Lu−1
∑

l=0

hu(l)Xu(n− l) + b(n) (30)

wherew(n) is an AWGN matrix with zero-mean and covariance
matrix σ2

wIU , b(n) is an AWGN with zero-mean and varianceσ2

b ,
Xu(n) is thenth sample of the transmitted OFDMA symbol and
−Ng ≤ n ≤ K − 1.

When using H∞ filtering: Ξ = 102, V =
σ2

b

2
I2 and

W = IUσ
2

w. One assumes that there is a state noisew(n) with a
very small variance, e.g.σ2

w = 10−3. For the CFO, the initialization
parameters of the algorithm iŝǫu(0) = 0 ∀u.
Figure 1 shows that the IEKF converges faster than the other Kalman
approaches. This is due to the fact that the measurement model is
linearized around the updated state vector, instead of the predicted
state vector.
Remark:when the noise characteristics are available, the EKF pro-
vides quite similar results in comparison with the “E-H∞” and there
is no real difference between the SPKF and the “unscented H∞

filter”. For that reason, in figure 1 we only show the results of the
Kalman filter based approaches.
In real cases, the variance of the additive is not necessarily ex-
actly known. Therefore, we suggest studying the robustness of the
Kalman and H∞ filter based methods against uncertainties. Figure
2 shows the robustness of the H∞ filtering taken the variance of the
additive noise is not known. For an error of5dB over the variance
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Fig. 1. Recursive CFO estimation for a joint CFO/channel estima-
tion using optimal filtering, when the noise statistics are available
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Fig. 2. Comparison between the Kalman filtering approaches and
the H∞ filtering approaches in terms of convergence speed, when
the noise statistics are not available

of the additive noise, H∞ filtering based approaches converge faster
than the Kalman ones. However, the computational complexity of
the H∞ filtering based approaches is higher than the SPKF. It should
be noted that when using the extended H∞ and the unscented H∞
approaches, the choice of the noise attenuation levelΞ plays a key
role. If it is set to a high value, there is no real difference between
the Kalman algorithm and the H∞ based approach, whereas no H∞

solution may exist ifΞ is set to a small value.

5. CONCLUSIONS AND PERSPECTIVES

Like Kalman filter, H∞ filter requires matrices to bea priori defined.
Thus, in the linear case, the transition and the measurement matrices
must bea priori known. In addition, a prescribed noise attenuation
level must be set by the practitionner. It must be suitably chosen to
guarantee the existence of the filter.
The theoretical comparative study presented in the paper will be the
basis of a sensitivity analysis of both H∞ and Kalman filters. H∞
filtering is a compromise between convergence, accuracy and com-
putational cost. The key issue is the selection of the noise attenuation
level. Concerning the estimation of both the channel and the CFO
in an OFDMA uplink communication system, IEKF is the KF based
approaches that converges the faster.
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