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ABSTRACT UKEF is based on the unscented transformation whereas the CDKF
T . i ) is based on the second-order Sterling polynomial interpolation for-
_ Hx filtering is more and more used in the field of recursive es-,15 - Note that brand new alternatives such as quadrature Kalman
timation in signal processing. The purpose of this communication i§jter and cubature Kalman fiter could be also considered.

to compare Kalman filtering and i filtering by considering their 4 rejax the assumptions on the model, interacting multiple model
Ricatti-type equations. Our contribution is twofold: firstly, we show ¢ the 24 and 3¢ generations using EKF and its variants can be
that the H filter can be seen as a Kalman filter with a model-noisegnsidered.

covariance matrix that depends on the noise attenuation level angeyertheless in the above approaches, the additive noise and the

varies in time. Hence, this can explain the convergence properties @i qe| noise must be white, uncorrelated and Gaussian. To relax the
the H. filter when estimating parameters. The convergence and ag; 5y ssjan assumption on the additive noise and the model noise, par-

curacy properties of both Kalman anddHilters are then illustrated e filter can be used. However, despite its popularity it is not well
by the estimation of a carrier frequency offset in a mobile communixjited when estimating fixed parameters. In addition the computa-

cation system. tional cost may be high. As an alternative, Hilter is designed to
Index Terms— Kalman filter, extended Kalman filter, Hfilter, be robust against uncertainties. Its purpose is to minimize the peak

extended H, filter, carrier frequency offset. error power in the frequency domain whereas the KF minimizes the

average error power [3]. No Gaussian assumption on the additive

noise and the model noise in the state-space representation of the

system is required. The H approach was introduced in the field of

i . L _ . control in 1981 [4]. For the last2 years, several studies based on a

In the field of recursive estimation, Kalman filtering (KF) and its Ricatti-type equation have been conducted by the signal processing

variants have played a key role for more than 40 years. TheYqmnmnity. Thus in [5], instead of using a KF, Shetral. suggest
have‘ been used in a W.'de range 9f applllcatlons: frqm radar pr ising an H filter to enhance a speech signal disturbed by an addi-
cessing to GPS navigation, from biomedical application to speec

- . ) e noise and recorded by a single microphone. For this purpose,
enhancer_nent. When de_allng with a 00”"'”96“ syste_m, the ext_end signal is assumed to be modeled by an AR process. However, the
}_(alman filter (EKF) consists in a_malytlcally propagat.lng the estima-pp parameters are unknown and hence need to be estimated. Shen
tion through the system dynamics, by means of a first-order Taylog 51 yronose to estimate them directly from the noisy observations
expansion, around the last state vector estimate, of the functlorbcy using a second H filter. However, the resulting AR parameter
defining the state-space representation of the system. However, 8Stimates are biased. To avoid this bias problem in [5], Latetrre

the approximation may not be sufficient to describe the non-linearity, [6] suggest estimating both the AR model and its parameters.

the EKF may sometimes diverge. To solve this problem, a secondghaugh this leads to a non-linear estimation issue, they have de-
order linearization can be considered and leads to the second-or

loped a structure based on two mutually interactive filters.

EKF (SOEKF) [1]. Another solution is to use the iterative extendedrpg st one aims at estimating the AR model, while the second one

Kalman filter (IEKF). In that case, the measurement model is Iin'u dates the estimation of the AR parameters. In addition, in [7], the

earized around the updated state vector, instead of the predicted stgfe, ) .« take advantage of the two mutually-interactive filters
vector. Then, the process is iterated until the state vector eStimaB%sed approach to jointly estimate the fading channel and its AR

aoes not ChﬁngemeCh' h e th ) ; parameters. However, the authors do not obtain better performance
owever, the above approaches require the computation o t’@anaKF based method.

Jacobian and the Hessian matrices for the first-order and the secongagearchers have taken advantage of the similarity (i.e. the Ricatti-
order linearizations respectively. Therefore, the sigma-point Kalmau&/pe equation) between KF andHfiltering to address the H filter

filter (SPKF) [2], namely the unscented Kalman filter (UKF) and they o564 non.-linear estimation issue in a more general case. Three main
central difference Kalman filter (CDKF), can be consideretihe

1. INTRODUCTION

points are propagated through the non-linear system. A ueigtombina-
1In that case, the state distribution is approximated by a Sanslistri- tion of the resulting values makes it possible to estimate thennaad the
bution, which is characterized by the so-called sigma poifiten, the sigma  covariance matrix of the transformed random variable.
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approaches have thus emerged: whereL is a linear transformation operator that can be either a ma-
1) Initial works about the “extended Hi filter” (E-H.) were con-  trix of sizeU x U or a row vector of sizé/. z(n) is hence a vector
ducted by Burl [8]. Like the EKF, it consists of a first-order lin- or a scalar.

earization around the last available estimation of the state vectoGiven (1)-(3), Ho filtering provides the estimation of the state vec-
Various authors have used the EzHilter. Thus, Giremuset al.  tor, by minimizing the H, norm of the transfer operator that maps
[9] have studied its relevance in the field of the global positioningthe discrete-time noise disturbances to the estimation error, as fol-
system (GPS) navigation. However, the authors do not obtain ndews:

ticeable improvements in terms of positioning error in comparison

with KF. 7 — sup SN e(n)?
2) Like SOEKEF, the second-order extendeg, Hilter has been re- o —1§Neb—1 2 —1 ¢ Neb—1 2
cently proposed in [10]. VT 2o IP@IF+WT 0 Wl )

3) The “unscented H filter” [11] is implemented by embedding the \yhere N°® denotes the number of available observatiar(s,) =
unscented transformation into the “ExH architecture. According z(n) — 2(n), andV andW are positive weighting matrices tuned
to the authors, the unscented. Hfiltering can be carried out by by the practitioner to achieve performance requirements.

using the statistical linear error propagation approach [12]. Like * 14 qvoid the difficulties in minimizing (4), the following sub-
the UKF, the unscented H filter avoids the linearization step by optimal Hs. problem is usually considered:

using an unscented transformation. It is used to approximate the

matrices that are involved in the definition of the,Hyain. In [13], J® < =2 (5)
the unscented H filter provides an initial alignment of an inertial

navigation system. The authors show that flitering approach is  whereZ=? is the prescribed noise attenuation level.

an "effective” method when the measurement noise is colored. At that stageP > (n + 1|n) satisfies the following Riccati equa-
Note that to relax the assumptions on the model, interacting multipléion for the H filter:

model based on H filter has been proposed in [14].

In this paper, our purpose is to compare the Hlter and the KF P*(n+1n) = &n)P>(nn)®"(n) + TWI"

in the linear case when estimating model parameters, by comparing = ®(n)P™(njn — 1){Iy (6)
the Ricatti equations of both algorithms. To our knowledge, there

is no work dealing with this kind of comparison. More particularly — [ TH(n) £ ]M’l { ‘I'l(:n) ]
we show that H, filtering can be seen as KF with a different model

noise covariance. This hence explains the performance of the H xP>(n|n — 1)}q>H(n) +rwrf

filter and its convergence properties. Note that the result we obtain

can be easily derived in the non-linear case when using the EKF anghereM is defined in (7) at the top of the next page.

the E-Hy. When using the K, filter, the state vector can be estimated re-
The paper is organized as follows: In section 2, we recall the stateursively as follows:

space representation of the system required by KF apdiltering.

Section 3 is dedicated to the comparative study between the Kalman x(n|n) = x(n|n — 1) + K= (n)y(n) (8)
filter and the H, filter. Finally section 4 gives an illustration. ) ) . o
In the following I v is the identity matrix of sizeV. wherex(n|n — 1) andx(n|n) are respectively the priori anda

posterioriestimations of the state vector at tim@andK> (n) is the

H filter gain defined as:
2. ABOUT THE STATE SPACE REPRESENTATION, THE

KF AND THE H .. FILTER K> (n) = {P*>®(n){P¥>®(n)}* ©)

KF is based on a state-space representation of the system and usdsereP¥¥>°(n) satisfies:
two equations to describe the system, when the state-space equations

are linear: PY*(n) = ®(n)P=(njn — 1)®" (n) + V (10)
x(n) = ®(n — 1)x(n — 1) + T'w(n) (1) andP™*(n)is:
y(n) = ¥(n)x(n) + b(n) ) P> (n) = P (n|n — 1)®" (n) (11)

wherex(n) is the state vector of siz€ at timen andy(n) is the ) . .
measurement vector of siZé at timen. The model noisev and the ~ EQU- (6) is true provided that:
observation noisk are uncorrelated white zero-mean Gaussian vec- o 1 H o . H

tors. In this paper the covariance matricesvoiindb are assumed to PZ(n+1n)" + ¥7(n)¥(n) —E7LL>0 (12)
be @ = 021y andR = o1k respectively. In addition® (n — 1)

is the transition matrix of siz& x U from timen — 1ton, I' is 3. KF VS Hq FILTERING
the input gain matrix of siz&/ x U and®¥(n) is the measurement
matrix K x U at timen. In the following, K(n) denotes the Kalman gain. In addition,

In a H, setting, given the state-space model in (1) and (2), le®®(n|n) = (Iv — K(n)¥(n))P(n|n — 1) andP(n|n — 1) denote
us introduce a third state-space equation to focus on a linear comidhea posteriorianda priori error covariance matrices when using a

nation of the state-vector components: KF.
Remark:for the sake of space, we do not recall the equation of
z(n) = Lx(n) (3) Kalman filtering as they are well known.
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m=| oy, || [P e e ] .
_ { \I:(n)Pozc(n\n - 1)\1:1(71) +V \Ilogn)P"o(n\n 711)6{: }
LP>(n|n — 1)®H (n) LP>®(n|n — 1)L — 221y
= [ e[ ]y 2]
= W(mn)X(n)Y(n) (19)

Then,M~! can be expressed as the product of three matrices,
the coefficients of which are defined from the coefficientdbaind
the Schur complemenf (n). See (19) at the top.

At that stage, given (19), we can rewrite the Riccati recursion
(6) as:

Let us first assume that:

P*(njn—1)=P(njn—1) 13)
and
L=1Iy (14)

In addition, as it is often done when dealing with Hilter in signal
processing, let us s&y andV to Q and R respectively. This
implies thatP¥¥°°(n) introduced in (10) is equal to the innovation
covariance matri?¥¥ (n) when using KF:

P>®(n+1|n) = ®(n)P(njn — 1)®" (n) + T Q'Y
—®(n)P(nln—1)[ ¥¥(n) Iy |W(n)X(n)Y(n)

v { ‘I’I(U”) }P(n\nf )& (n)

= ®&(n)P(njn —1)®" (n) + rQr”? (20)
PY*(n) =P (n) = ¥(n)P(njn — DT (n) + R (15) —®(n) [ P(njn—1)¥"(n) P(nn) ]
Then, the H, and Kalman gains are equal: % {{Pyyg”)rl qu } [‘I’(”)PP(SZLZL) -1 &' (n)
K% (n) = K(n) = P(njn — ) ¥ (n)(P*¥(n))™"  (16)

Using (18), this leads to:

Then, let us comparP> (n + 1jn) andP(n + 1|n). For this oo _ B H H
purpose, let us use (6) where the malvixnust be inverted. Among P™(n+1ln) = @(n)P(nLn 1)‘Iy)y (n) :FQF .
the approaches to invel such as the matrix inversion lemma, we ~®(n) [P(n|n — )T (n){P¥(n)} " P(n|n)Y "]
suggest using the one based on the Schur complement [15] for the ¥ (n)P(njn —1)
sake of simplicity’. Thus, let us defin@ (n) the Schur complement X P(n|n)

of P¥Y*°(n) in M as follows: -
=®(n)P(njn — 1)®@" (n)

EXG (21)

Y(n) = {P®@nn-1)—-Z=Iy}
— P¥(njn - ¥ (n){P¥*(n)}

XW(n)P>(njn —1) 17)

Given (13) and (15) and the relation betwde(n|n — 1) and
P(n|n), one obtains:

—®(n)K(n)®(n)P(n|n — 1)®" (n)
—®(n)P(nn) X 'P(n|n)®" (n) + TOI'"

=& (n)P(n|n)®" (n)—®(n)P(nn){P(n|n) — 221y} !
xP(n|n)®" (n) + TQI'Y

Hence, the solution of the Riccati equation when using theftter
satisfies:

o~ Pl P¥(n+ 1in) = ()Pl (1)
(P laln— DB ) (P ()} ) () Femrrer - @2
xP(njn —1) — =1y = ®(n)P(njn)®" (n) + Q
= P(n|n—1) - Kn)¥n)P(njn—1) - Iy where
- RS B9 9% = ~@mP(in) (Plrln) — =210}~ Plni) @ (n)
> A B 1 _ (23)
M = { C D ] then M =  Given (22), one has:
R T | R | R S P¥(n+1ln) = Pn+ 1)+ Q%) (24)

whereA is a matrix of sizeK x K, B is a matrix of sizeK x U, Cis a
matrix of sizeU x K, D is a matrix of sizd/ x U,S =D — CA~'Bis
the Schur complement @k in M andQ is a zero matrix.

Therefore, the H, filter can be seen as a KF with a model-
noise covariance matrix equal t@=* = Q=(n) + ror#
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= —®(n)P(n|n){P(nn) — E Iy} 'P(n|n)®” (n) + TQTH.  guarantee orthogonality between subcarriers. To avoid the resulting
For parameter tracking, the larger the coefficients of the stateintercarrier interference (ICI), a CFO estimation and correction step
noise covariance matrix are, the easier it is to track the parametenust be introduced at the receiver by using a training sequence (i.e.
variations, especially when the parameters are subject to abruptsequence known both at the transmitter and the receiver).
variations. Nevertheless, the larger they are, the larger the varian¢e what follows, an orthogonal frequency division multiple access
of the estimated parameters over time is. (OFDMA) IEEE 802.16 WirelessMAR uplink system composed
To analyze how the K filter behaves in comparison with KF, let us of U = 4 users sharindd = 128 subcarriers is considered. A trans-
introduce the eigenvalue decompositiorRifn|n): mission over a Rayleigh slow-fading frequency-selective channel
composed of_,, = 3 Vu multipaths is supposed and a cyclic prefix
M0 - 0 N, = K/8 > max(L,) is added to the OFDMA symbol. BPSK

0o . . . is used to modulate the information bits. The carrier frequency is at
Pap)=G| ~ G fe = 2.6GHz and the bandwidth is set to
: ) ) 0 W = 20MHz. The users’ normalized carrier frequency offset

0o --- 0 M (CFO) errors are set te, = 0.02 Vu. Then, let us introduce

o2 . .
where{\, }ue(1.2....0y are the eigenvalues & (n|n). Hence, one  SNR= 10log(7s), whereoy is the mean power of the received

has: signal from theuth user.
o Let us define the vectoe of size U and the vectorh of size
M—F2 0 .- 0 L = YU L. by storing the CFOs and the channel state infor-
0 : B mations (CSls) of th&/ users in the system as follows:
P(nn) - Z°Iy = G ' G
: - - 0 € = J[e1,€2,. . €uy...,€U] (26)

0 0 AU—EQ h = [hl,hz,...,hu,...,hy} (27)

Therefore: whereh, = [hy(0), hu(1), ..., hu(l), .., hu(Ly — 1)].
) Let us define the vectot(n) of sizel/ = U + 2L, which is the state
A1 0 .- 0 vector of the system:
T
(é(n))H x(n) = [ e€(n) Re{h(n)} Im{h(n)} ] (28)
0 Now, let us introduce the state-space representation of the system:
State equation

_ , (25) x(n) =x(n—1)+w(n) ¥V ne|[-N,K—1  (29)
where®(n) = ®(n)G and{—ﬁ}ue{l’gw,[]} are the eigen-
values OfQE(n). It should be noted that whef tends to-+oo, .
Q%(n) tends to be a zero matrix and Measurementequation
P°°§n+1|n) tends taP(n + 1|n). _ U
If 22 > Ay, forue {1,2,...,U}, @Q=(n) is a positive-definite _ 2 <4 _
matrix. The solution to the Ricatti equation for theHilter can be R(n) Z ¢ E fu(DXu(n =) +b(n) (30)
seen as an upper bound of the Kalnsapriori error covariance ma-
trix. The same kind of consideration can be done when comparingherew(n) is an AWGN matrix with zero-mean and covariance
the EKF and the E-K.. matrix o211, b(n) is an AWGN with zero-mean and varianeg,
X (n) is the nth sample of the transmitted OFDMA symbol and
~N,<n<K-1.
When using H, filtering: £ = 10, Vv = "7512 and
In this section, we carry out a comparative study between variant¥y = I,o2. One assumes that there is a state neige) with a
of the KF and the H, filter to estimate the carrier frequency offset very small variance, e.gr2, = 10~3. For the CFO, the initialization
(CFO) in mobile communication. Indeed, despite the great succegmrameters of the algorithmds (0) = 0 Vu.
of the code division multiple access (CDMA) as a multiple access-igure 1 shows that the IEKF converges faster than the other Kalman
technique, the current trend is to use the orthogonal frequency divapproaches. This is due to the fact that the measurement model is
sion multiple access (OFDMA). In that case, the input data streartinearized around the updated state vector, instead of the predicted
is split into a number of streams that are transmitted in parallel ovestate vector.
a large number of orthogonal subcarriers. The frequency-sadecti Remark:when the noise characteristics are available, the EKF pro-
fading over the entire bandwidth of the transmitted signal has hencédes quite similar results in comparison with the “EzMand there
the advantage of being converted in frequency-flat fading over eads no real difference between the SPKF and the “unscented H
subcarrier. These schemes are particularly well adapted to mobifdter”. For that reason, in figure 1 we only show the results of the
wireless communication to provide high-data rate services. Kalman filter based approaches.
However, there are two unwanted phenomena. 1/ the channel ré: real cases, the variance of the additive is not necessarily ex-
mains unknown and hence has to be estimated. 2/ the relativactly known. Therefore, we suggest studying the robustness of the
transmitter-receiver motion and a difference between the localKalman and H, filter based methods against uncertainties. Figure
oscillator (LO) frequencies at the transmitter and the receiver lea@ shows the robustness of theHiltering taken the variance of the
to a CFO. These CFOs that affect the received signal no longeadditive noise is not known. For an error @B over the variance

4. ILLUSTRATION
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Fig. 1. Recursive CFO estimation for a joint CFO/channel estima-

tion using optimal filtering, when the noise statistics are available
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