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Abstract. Based on the uniform linear array (ULA)

and the spatial-smoothing technique, a robust beamforming

problem for the reception of coherent signals is addressed

and a forward-only (FO) beamformer is proposed based on

worst-case optimization by considering both the steering

vector and the correlation matrix errors. It is then extended

to the forward-backward (FB) case with an improved per-

formance. By introducing a preprocessing matrix, real-valued

closed-form solutions are then derived with the same per-

formance as in the FB case, but with much lower computa-

tional complexity. Simulations verified the effectiveness of

the proposed algorithms.

1. INTRODUCTION

In the past decades, various algorithms have been proposed

for adaptive beamforming, such as the well-known linearly

constrained minimum variance (LCMV) beamformer [1, 2].

One key assumption for most of the methods is that the in-

terferences are not correlated with the desired signal. In

the presence of coherent interferences, the traditional algo-

rithms will not work effectively since the desired signal will

be canceled at the output. The spatial-smoothing method

was proposed by Shan et al. with a detailed analysis to deal

with this problem by separating the whole array into sev-

eral subarrays [3]. However, this method is based on spe-

cial array structures such as uniform linear arrays (ULAs),

whose correlation matrix is of Toeplitz. Moreover, all sen-

sors are assumed to have identical response. In practice,

performance of this method will degrade when the special

structure is destroyed due to model perturbations, such as

array mutual coupling, sensor position errors, discrepancies

in sensor responses, etc. Therefore, a robust beamformer is

required for the scenario with coherent signals.

Various robust algorithms for uncorrelated signals have

been proposed in the past decades. Based on a model for

steering vector mismatches, the worst-case optimization based

robust beamformer was proposed in [4, 5]. By estimat-

ing the real steering vector through maximizing the beam-

former’s output power, the robust Capon beamformer was

proposed in [6] and it was then implemented in a recursive

form in [7]. By generalizing the signal covariance matrix

into a higher rank (non-point) one and transforming the op-

timization into a generalized eigenvector problem (GEP),

a robust approach for general-rank signal models was pro-

posed in [8], which was further developed in [9] with pos-

itive semidefinite constraints. However, all of the proposed

robust beamformers are based on uncorrelated signals with

significantly increased computational complexity for most

cases.

For coherent interfering signals, in [10], a robust Capon

beamformer was derived in the presence of coherent inter-

ference with the assumption that all interfering DOA an-

gles are known. Without knowing the interfering DOA an-

gles, in this paper, a robust forward-only (FO) worst-case

optimization based beamformer is first proposed for coher-

ent signals by considering both the array structural error

and the steering vector error. The solution is then extended

to the forward-backward (FB) case with an improved out-

put signal-to-interference-plus-noise ratio (SINR). By fur-

ther introducing a preprocessing matrix, we transform the

complex-valued FB robust beamfomer into a real-valued

one, with a computational complexity reduction of 50% −
75%, depending on values of the parameters.

2. SIGNAL MODELS

Consider an array system with M sensors. The nth snapshot

vector x[n] of the received array signals can be expressed as

x[n] = s0[n] +
L−1
∑

i=1

si[n] + n[n] , (1)
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Fig. 1: The beamforming structure with spatial smoothing.

where s0[n], si[n], (i = 1, · · · , L − 1) and n[n] are the

desired signal, interference and noise vectors, respectively,

and L is the total number of impinging signals. By applying

a set of coefficients wi, (i = 0, . . . ,M − 1) to x[n], we

obtain the beamformer output y[n] as

y[n] = wHx[n] , (2)

where {·}H denotes the Hermitian transpose operation and

w is the weight vector. Given the steering vector of the

desired signal, a traditional solution to the interference sup-

pression problem is the LCMV beamformer. However, when

the interferences are coherent with the desired signal, per-

formance of the traditional LCMV beamformer will be de-

graded significantly. Spatial smoothing is an effective way

to decorrelate the signals based on special array structures

such as ULA [11]. As shown in Fig. 1, a full-length ULA

with M sensors is divided into K overlapped subarrays with

each subarray composed of P sensors. The first subarray is

formed by sensors {1, 2, · · · , P} and the second subarray

formed by sensors {2, 3, · · · , P + 1}, etc. As a result, the

full array is divided into K = M − P + 1 subarrays. Each

set of subarray data can be expressed as

xi[n] = [xi[n], xi+1[n], · · · , xi+P−1[n]], i = 1, 2, · · · ,K ,
(3)

where xi[n] (i = 1, · · · ,M) is the ith sensor output at time

index n.

The forward-only optimum Capon weight vector with

spatial smoothing is given by [3]

ŵc,fo =
R̂−1

ss â0

âH0 R̂−1
ss â0

. (4)

â0 is the estimated steering vector of the desired signal and

R̂ss is the correlation matrix of the subarrays, defined as

R̂ss =
1

NK

K
∑

i=1

N
∑

n=1

xi[n]x
H
i [n] =

1

NK

K
∑

i=1

X̂iX̂
H
i , (5)

where X̂i = [xi[1],xi[2], · · · ,xi[N ]].

The use of R̂ss will introduce the finite-sample effect

and â0 can cause DOA angle mismatch error. Moreover, the

spatial-smoothing method is based on a special array struc-

ture. Since array position errors, sensor response discrep-

ancies and the finite-sample effect will destroy the Toeplitz

structure of the correlation matrix, the algorithm with spa-

tial smoothing will not converge to the optimum solution

any more, causing new errors to the system. Therefore, a

robust beamforming algorithm for coherent signals is re-

quired.

3. PROPOSED ROBUST BEAMFORMING

ALGORITHMS

The relationship between the estimated and the real steering

vectors and real correlation matrices can be written as

a0 = â0 +∆â0, Rss = R̂ss +∆R̂ss , (6)

where ∆â0 and ∆R̂ss represent the corresponding estima-

tion errors and ∆R̂ss is assumed to be Hermitian. Each of

them is composed of two parts, with the first part due to

traditional errors such as DOA angle mismatch and finite-

sample error, and the second part due to the spatial-smoothing

operation.

3.1. Forward-only Implementation

We can solve the robust beamforming problem against arbi-

trary errors ∆â0 and ∆R̂ss in the following way

min
ŵ

ŵH(R̂ss +∆R̂ss)ŵ

subject to |ŵH(â0 +∆â0)| ≥ 1

for all ‖∆â0‖ ≤ ε, ‖∆R̂ss‖ ≤ γ , (7)

where ŵ is the weight vector, ‖ · ‖ is the Frobenius norm,

and γ and ε are two positive constants.

We first consider the correlation error matrix ∆R̂ss.

The worst-case extension of (7) can be written as

min
ŵ

max
‖∆R̂ss‖≤γ

ŵH(R̂ss +∆R̂ss)ŵ

subject to |ŵH(â0 +∆â0)| ≥ 1

for all ‖∆â0‖ ≤ ε . (8)

For the Hermitian error matrix ∆R̂ss, given an arbitrary

ŵ, the maximum of ŵH(R̂ss + ∆R̂ss)ŵ occurs on the

boundary ‖∆R̂ss‖ = γ. Then the maximization in (8) can

be simplified to

min
∆R̂ss

− ŵH(R̂ss +∆R̂ss)ŵ

for all ‖∆R̂ss‖ = γ . (9)

We can form the following Lagrange function

Q = −ŵH(R̂ss +∆R̂ss)ŵ + λ1(‖∆R̂ss‖2 − γ2) , (10)
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where λ1 is the Lagrange multiplier. Taking the gradient

of Q with respect to ∆R̂ss and setting it to zero, we have

∆R̂ss = ŵŵH/(2λ1). With ‖∆R̂ss‖2 = γ2, we get

∆R̂ss = γ
ŵŵH

ŵHŵ
. (11)

Substituting it into (8) and notice that |ŵH(â0 + ∆â0)| ≥
|ŵH â0| − ε‖ŵ‖. Then we have

min
ŵ

ŵH(R̂ss + γI)ŵ

subject to |ŵH â0| − ε‖ŵ‖ ≥ 1 . (12)

The imaginary part of ŵH â0 can be zero by rotating

the optimum solution. Moreover, the inequality constraint

|ŵH â0|−ε‖ŵ‖ ≥ 1 can be changed to |ŵH â0|−ε‖ŵ‖ = 1
by scaling the optimum weight vector without affecting the

output SINR [4]. Then (12) can be transformed to

min
ŵ

ŵH(R̂ss + γI)ŵ

subject to |ŵH â0 − 1|2 = ε2ŵHŵ . (13)

Using the method of Lagrange multipliers, the optimum so-

lution, ŵo,fo, is obtained by

ŵo,fo =
λ2(R̂ss + γI+ λ2ε

2I)−1â0

λ2â
H
0 (R̂ss + γI+ λ2ε2I)−1â0 − 1

, (14)

where the matrix inverse lemma has been used and λ2 is an

unknown Lagrange multiplier.

R̂ss can be decomposed into R̂ss = UΛUH with U

and Λ = diag[δ1, δ2 · · · , δM ] being the eigenvector matrix

and diagonal eigenvalue matrix of R̂ss, respectively. Then

equation (14) is further simplified to

ŵo,fo =
λ2U

H(Λ + γI+ λ2ε
2I)−1Uâ0

λ2â
H
0 UH(Λ + γI+ λ2ε2I)−1Uâ0 − 1

. (15)

Since ŵo,fo satisfies the constraint equation in (13), substi-

tuting (15) into (13), we have

λ2ε
2|âH0 UH(Λ + γI+ λ2ε

2I)−1Uâ0| = 1 . (16)

Using the substitution z = UH â0 with zi being the ith
element of z, (16) becomes

f(λ2) = λ2ε
2

M
∑

m=1

|zm|2
δm + γ + λ2ε2

= 1 , (17)

where f(λ2) is a function of λ2 and denotes the left side of

(16). λ2 can be obtained by solving (17). Since f(λ2) is a

monotonically increasing function of λ2, limλ2→∞f(λ2) >
1 and f(0) = 0 < 1, we can see that the solution to (17) is

unique.

The result of (14) is based on the coherent signal model

and the spatial-smoothing technique. If the correlation ma-

trix error is zero and the spatial-smoothing operation is re-

moved, (14) will be reduced to the original worst-case opti-

mization solution in [4].

3.2. FB Implementations

The solution (14) is based on the FO sample correlation ma-

trix, which requires at least 2L sensors to eliminate the cor-

relation between the desired signal and interferences. Based

on the same ULA structure, FB processing can be employed

to improve performance of the FO-based algorithms and re-

duce the number of sensors required [11, 12].

For the ULA structure, we have known that the corre-

lation matrix Rss is centrohermitian, i.e. Rss = JR∗
ssJ,

where J is the exchange matrix defined as

J =











0 . . . 0 1
0 . . . 1 0
...

. . .
...

...

1 . . . 0 0











. (18)

Moreover, its steering vector satisfies a0 = Ja∗0 when the

zero phase position is chosen to be the center of the array.

Then we can use the FB estimations R̃ss and ã0 instead of

the FO ones as follows

R̃ss =
R̂ss + J(R̂ss)

∗J

2
and ã0 =

â0 + Jâ∗0
2

, (19)

with the following relationship

a0 = ã0 +∆ã0, Rss = R̃ss +∆R̃ss , (20)

where ∆ã0 and ∆R̃ss are the corresponding estimation er-

rors, which now also include the new errors caused by the

FB operation due to structural errors. In order to improve

robustness of the beamformer against the new set of errors,

we can formulate the problem into:

min
ŵ

ŵH(R̃ss +∆R̃ss)ŵ

subject to |ŵH(ã0 +∆ã0)| ≥ 1

for all ‖∆ã0‖ ≤ ε̃, ‖∆R̃ss‖ ≤ γ̃ . (21)

where ε̃ and γ̃ are two positive constants. For simplification,

we will still use ε and γ in the following derivation. With the

same process as in the FO case, we can obtain the following

optimum solution ŵo,fb to the above FB-based beamformer

as

ŵo,fb =
λ̃2(R̃ss + γI+ λ̃2ε

2I)−1ã0

λ̃2ã
H
0 (R̃ss + γI+ λ̃2ε2I)−1ã0 − 1

, (22)

which has exactly the same form as (14) except that the FO

estimations are now replaced by the FB ones. λ̃2 is the La-

grange multiplier and can be solved in a similar way as in

the FO case.
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3.3. Real-valued Implementations

Let us first introduce a unitary transformation matrix T [13,

12]

T =































1√
2

[

I J

jJ −jI

]

for even P

1√
2





I 0 J

0
√
2 0

jJ 0 −jI



 for odd P

(23)

By using this T to transform X̂i to a new output TX̂i and

keeping the beamformer output the same, the original weight

vector ŵ will be changed to Tŵ since

y = ŵHX̂i = ŵHTHTX̂i = (Tŵ)H(TX̂i) . (24)

We can prove that after such a transformation, the optimum

FB solution ŵo,real = Tŵo,fb will be real-valued. i.e.

ŵo,real ∈ R , (25)

Proof: Let us first define

X̄i = TX̂i, R̄ss = TR̃ssT
H , and ā0 = Tã0 . (26)

Using (22) and noticing TH = T−1, we have

ŵo,real = Tŵo,fb =
λ̃2T(R̃ss + (γ + λ̃2ε

2)I)−1ã0

λ̃2ã
H
0 (R̃ss + (γ + λ̃2ε2)I)−1ã0 − 1

=
λ̃2(T

HR̃ssT+ (γ + λ̃2ε
2)I)−1Tã0

λ̃2ã
H
0 TH(THR̃ssT+ (γ + λ̃2ε2)I)−1Tã0 − 1

=
λ̃2(R̄ss + bI)−1ā0

λ̃2ā
H
0 (R̄ss + bI)−1ā0 − 1

, (27)

where b = γ + λ̃2ε
2. Using (19), and with TJ = T∗ and

JTH = TT , where {·}T denotes the transpose operation,

we have

R̄ss = TR̃ssT
H = T

R̂ss + JR̂∗
ssJ

2
TH

=
TR̂ssT

H + (TR̂ssT
H)∗

2
= Real(TR̂ssT

H)

=
1

NK

K
∑

i=1

Real(TX̂iX̂
H
i TH) , (28)

where Real{·} denotes the operation of taking the real part.

We then have R̄ss ∈ R. For ā0, we can follow the same

method to prove that ā0 = Real(Tâ0) ∈ R. So all of the

parameters in (27) are real-valued, we then have ŵo,real ∈ R,

which completes the proof.

We can further separate X̂i into the sum of its real part

X̂i,R and imaginary part X̂i,I as

X̂i = X̂i,R + jX̂i,I . (29)

Then Real(TX̂iX̂
H
i TH) = X̄i,RX̄

T
i,R + X̄i,IX̄

T
i,I . Substi-

tuting it into (28), we have

R̄ss =
1

NK

K
∑

i=1

(X̄i,RX̄
T
i,R + X̄i,IX̄

T
i,I) . (30)

Substituting (30) into (27), we can simplify ŵo,real to

ŵo,real =

λ̃2(
∑K

i=1
(X̄i,RX̄

T
i,R+X̄i,IX̄

T
i,I)+bNKI)−1ā0

λ̃2ā
H
0 (

∑K

i=1
(X̄i,RX̄

T
i,R+X̄i,IX̄

T
i,I)+bNKI)−1ā0−NK

(31)

If γ = 0, (31) is then reduced to the real-valued worst-

case optimization beamformer without considering the cor-

relation matrix error.

With the real-valued implementation in (31), the com-

putational complexity of the system has been reduced by

50% − 75% compared with the FO algorithm in (15) and

the FB based algorithm in (22).

3.4. Robust Algorithms for Uncorrelated Signals

If the subarray number is 1, i.e. P = M and K = 1, then all

the proposed algorithms are reduced to a normal worst-case

optimization beamformer without spatial smoothing, which

is robust against both the steering vector and the correlation

matrix errors. So the robust worst-case optimization algo-

rithm for correlated signals based on the spatial-smoothing

technique is a general case of the uncorrelated ones.

4. SIMULATION RESULTS

Our simulations are based on a ULA with M = 8 and a sen-

sor spacing d = λ0/2, where λ0 is the signal wavelength.

The sensor number for each subarray is P = 5 and there

are in total K = M − P + 1 = 4 subarrays. The data

sample size N = 20. There are three signals with the same

power arriving from DOA angles θ0 = 10◦, θ2 = 40◦ and

θ3 = −40◦, respectively, with the first signal being the de-

sired one. We assume that the estimated DOA angle for the

desired signal is θ0 = 12◦ so that there is a 2◦ mismatch er-

ror. A Gaussian distributed random vector with zero mean

and variance δe = 0.025 will be added to the original steer-

ing vector. The parameters γ = 3, ε = 3 are used. Since

all real-valued algorithms have the same performance as the

FB-based ones except for their much lower computational

complexity, in simulations we only consider the proposed

real-valued algorithm.

Fig. 2 shows the output SINR performance of the origi-

nal FO Capon (O-FOC) beamformer (4), the robust FO so-

lution (R-FO) (14), and the robust real-valued solution (R-

RV) (31), with respect to the signal-to-noise ratio (SNR)

varied from 0dB to 20dB. The optimum SINR value shown
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Fig. 2: Output SINR versus input SNR for coherent signals.

is for the ideal case without any errors. As we can see, the

robust algorithm has achieved a much higher output SINR

than the original ones (O-FOC), and the output SINR is in-

creasing steadily with the increase of input SINR. The real-

valued algorithm gives a little higher output SINR, which

means that the gain due to FB processing is greater than the

loss due to the structural error caused by the same process-

ing.

5. CONCLUSIONS

A robust forward-only beamformer against both arbitrary

steering vector errors and correlation matrix errors has been

proposed based on worst-case optimization for coherent in-

terfering signals. The forward-only solution is extended

to forward-backward case with improved performance. By

adding a preprocessing stage to the beamformer through a

unitary transformation matrix, low-complexity robust algo-

rithm with real-valued implementation was derived. Simu-

lation results have shown that all the proposed algorithms

can work effectively against the introduced steering vector

and correlation matrix errors.
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