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ABSTRACT 
 

Spectral histology of cancer can be achieved thanks to the 

analysis of infrared (IR) hyperspectral images. The Fuzzy C-

Means (FCM) clustering is particularly well adapted since each 

object is attributed to all clusters with different membership 

values. Applied on IR hyperspectral images of human skin 

cancers, it can highlight fine transitions between tumor and 

surrounding tissues and/or tumor heterogeneities. However, to 

provide a biomedically interpretable clustering, the relevant 

values of the two FCM parameters, i.e. the number of clusters 

and the fuzziness parameter, must be judiciously selected for 

each analyzed tissue. In this paper, the performance of some 

classical cluster validity indices and m-rules previously 

presented in the literature are evaluated. A new heuristic method 

based on the redundancy of FCM clusters is also proposed. We 

show that our method highly improves the clustering quality and 

computational time when applied on IR images of human skin 

tumors. 
 

Index Terms— Infrared spectral imaging, skin cancer, 

Fuzzy C-Means, validity indices, m-rules, spectral histology 
 

1. INTRODUCTION 
 

A challenge in oncology is to early diagnose tumors in order to 

increase the therapeutic effects of medical treatments and 

improve the life expectancy of patients. Traditionally, the 

diagnosis is realized by conventional histology which is based 

on the morphological analysis of biopsy slices stained with 

Hematoxylin and Eosin (HE). Since few years, novel and non-

destructive biophotonic approaches are developed in order to 

achieve spectral histology as a complement to conventional 

histology. 

Infrared (IR) spectroscopy has been shown to be a 

potential candidate to achieve spectral histology for cancer 

diagnosis. This technique is based on the interaction of an 

incident IR light beam with a point on the analyzed sample. 

When the energy of an incident photon is equal to the energy of 

a vibrational mode of the sample, this photon is absorbed by the 

sample, and a decrease of the transmitted light intensity is 

recorded. These intensity losses are recorded at different 

wavelengths (or wavenumbers) to give the absorbance spectrum 

of the acquisition point. A spectrum is thus a real molecular 

fingerprint giving information about the structure and 

metabolism of biomolecules at the acquisition point. IR 

spectroscopy has already been used to discriminate between 

different kind of tumors and also between healthy and tumoral 

tissues [1].  

By repeating this operation with a scanning of the sample 

surface, a hyperspectral dataset is recorded. This huge amount of 

data requires the use of clustering methods to achieve spectral 

histology [2, 3], i.e. for the histopathological recognition of the 

sample structures, especially to highlight some structures 

invisible for the pathologist on HE histological images. 

Hierarchical analysis and K-Means (KM) clustering have been 

shown as very efficient to retrieve the analyzed tissue structures 

and to localize tumors [3, 4]. However, each spectrum belongs 

to only one cluster with these techniques.  

Fuzzy C-Means (FCM) [5] seems to be better adapted 

since each spectrum can be attributed to all clusters thanks to 

membership values ranging from 0 to 1. This property is 

biologically relevant since transitional zones between tissue 

structures or even heterogeneities can be highlighted, while it is 

not always the case on the HE images. 

FCM is controlled by two parameters, i.e. the number of 

clusters C and the fuzziness parameter m, that must be fixed by 

the user, and from which will depend the quality of the 

clustering results. When applied to IR spectroscopy, C is usually 

empirically chosen, whatever the clustering method used [3, 4], 

based on biological knowledge on the sample composition. On 

the contrary, m is classically fixed to 2 [3].  

Some solutions have been developed to answer this 

parameterization problem. First, the automatic selection of C has 

been addressed by the so-called validity indices which optimize 

a criterion [6]. Second, m-rules estimate m by the optimization 

of a criterion [7-9] or by using empirical rules [10]. However, 

validity indices and m-rules have been developed independently 

from each other. Validity indices assume that m=2, while some 

applications on real world dataset show that this choice can lead 

to misclutering since it depends on the structure of the data. 

Moreover, some m-rules suppose that C must be a priori known.  
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The development of methods able to simultaneously 

determine C and m is thus crucial. Recently, a new method, 

named FCM-Redundant Based Algorithm (FCM-RBA) has 

been proposed to solve this problem [11]. This method is based 

on the removal of redundant clusters. The first aim of this paper 

is to propose a faster version of this heuristic method. The 

second aim is to compare the efficiency of  classical validity 

indices, m-rules and our method on IR images of human skin 

tumors. 
 

2. FUZZY CLUSTERING TECHNIQUE 
 

FCM [5] is a famous clustering algorithm which can be seen as a 

generalization of the well-known KM algorithm by introducing 

a fuzziness parameter m. This parameter must be higher than 1. 

Indeed, a value of m close to 1 makes FCM equivalent to the 

crisp KM clustering. On the contrary, as m increases, the 

fuzziness of the results increases as well. If m tends to infinity, 

the estimated clusters are identical.  

With FCM, each IR spectrum can belong to every cluster 

with a membership coefficient ranging between 0 and 1. The 

only constraint is that the sum of these coefficients must be 

equal to 1 for each spectrum.  

 Intermediate spectra could thus be highlighted as their 

membership coefficients are equally distributed between several 

clusters. This kind of dataset clustering emphasizes a new type 

of information like transitional zones between two or more 

clusters. Such transitions are very informative here since they 

could match to a tumor progression into a surrounding healthy 

tissue and/or tumor heterogeneity. 

In order to highlight those zones, it is necessary to 

determine the optimal values of C and m. That’s why cluster 

validity indices and m-rules have been developed. 
 

3. CLUSTER VALIDITY INDICES 
 

Cluster validity indices estimate the optimal value of C by 

looking for the value of C that optimizes a criterion [6]. To 

construct these validity indices, several FCM with different 

values of C must be computed, being very time-consuming.  

The first validity indices only consider the membership 

coefficients estimated by FCM [6]. We can cite the partition 

coefficient (VPC) based on the sharing of objects between 

clusters, the partition entropy (VPE) based on the fuzziness of the 

estimated partition, the modified partition coefficient (VMPC) 

which is a transformation of VPC, the Windham proportion 

exponent (VWPE) based on the overlapping between clusters, the 

Kim-Kim-Lee-Lee coefficient (VKKLL) based on the sharing 

between clusters, and the fuzzy partition measure (VP) based on 

compactness and separation notions [6].   

To overcome the observed sensitivity of these indices to m 

and their monotonic behavior in function of C, new validity 

indices were developed using membership coefficients and 

centroids [6]. A majority of these indices are constructed by 

melting two approaches, inter-cluster distances, which should be 

as biggest as possible, and the intra-cluster distances, which are 

preferred when they are as smallest as possible. The most 

efficient indices in the scientific literature are the following ones 

[6]: the Fukuyama-Sugeno index (VFS), the Xie-Beni index 

(VXB), the Kwon index (VKw), the Tang index (VT), the partition 

coefficient and exponential separation (VPCAES), the validity 

index of Tsekouras and Sarimveis (VVI), the compose within and 

between scattering (VCWBS), the Wang-Sun-Jiang index (VWSJ), 

the Pakhira-Bandyopadhyay-Maulik index (VPBMF), the 

separation and total compactness index (VSTC), the fuzzy 

separation and compactness index (VFSC). Other indices are 

based on the hypervolume and the density (the fuzzy 

hypervolume index (VFHV), the partition density index (VPD) and 

the average partition density (VAPD)), the granularity-

dissimilarity measure (VGD), the ratio of the overlapping to the 

separation (VOS) or an optimality test (VOT). Due to the lack of 

place, the interested reader can refer to [6] and references 

therein for a detailed presentation of these validity indices. 
 

4. M-RULES 
 

The aim of m-rules is to find the value of m which optimizes a 

criterion. m-rules can be decomposed into two groups. The m-

rules belonging to the first group only use the data to assess the 

optimal value of m. Among these methods can be cited the 

Dembélé-Kastner empirical rule (RDK) which is based on the 

computation of the variation coefficient, or the theoretical β rule 

(Rβ) which computes upper bound for m. 

The second group is composed of rules based on the 

results of the FCM algorithm, such as the fuzzy decision 

optimization rule (RFDO) which maximizes the intersection 

between a fuzzy goal and a fuzzy constraint, or the Okeke-

Karnieli rule (ROK) which minimizes the reconstruction norm of 

the dataset with the FCM results. 
 

5. FCM-RBA 
 

In [11], a new heuristic method, named FCM-RBA, determining 

automatically the best values of C and m was proposed. Its main 

idea is to decrease the number of clusters if at least two clusters 

are similar for a given m.  

The similarity here is measured by the Pearson correlation 

coefficient between the membership values. T is a new 

introduced parameter which represents a threshold for the 

correlation coefficients. It takes its values between 40% and 

95%, with a step of 5%. If there is redundancy between two 

clusters, i.e. their correlation coefficient is superior to T, then 

one of them becomes useless. 

In this article, FCM-RBA is modified in order to improve 

the computational time. First, an interruption inside the FCM 

algorithm itself occurs when the current results, during 

successive iterations, present redundancy between at least 2 

clusters. Second, FCM results being independent on T, if, for a 

previous T value, a FCM clustering has already been computed 

for a given setting of C and m, then it is not necessary to 
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Figure 2: Membership values estimated by FCM for C=2 and m=2. 

 

Figure 1: HE histological image of the BCC sample. 

cluster 2 cluster 1 

Table 1: Optimal number of clusters Copt estimated by the validity 

indices for different values of the fuzziness parameter m. 

 

compute it again.  

This redundant method proceeds as follows: 

1. Initialization of parameters. C is empirically initialized at 

15, m at 1.1 and T at 0.4. 

2. Calculation of FCM (C, m, T). 

3. Interruption of FCM, allowing a gain in time complexity, 

if redundant clusters are detected. C is revalued as follows:  

C = C–1, and FCM (C, m, T) is recomputed by going to 

step 2.  

4. If no redundancy is detected in step 3, the best value of C 

is recorded into Cbest (m, T). 

5. All those calculations are repeated from the second step 

with a new value of m, m = m + 0.1 and initialization of C 

as C = Cbest (m-0.1, T) + 2, if the floor of 15 is respected, 

otherwise C=15. It is interesting to mention that this 

initialization of C induces a considerable gain in time of 

execution.  

6. When all the values of m are gone over, all those 

calculations are run again with a new value of T as T 

= T + 0.05, till T is equal to 0.95.  

For each T, a curve Cbest(m, T) is thus estimated. The 

interpretation of these curves to find the best m and C is left to 

section 6.4. 
 

6. RESULTS AND DISCUSSION 
 

6.1. Sample description 
 

The previously described methods have been applied on an IR 

hyperspectral image acquired on a basal cell carcinoma (BCC) 

section. The image is composed of 104x61 pixels. In each pixel, 

a spectrum composed of 451 wavenumbers uniformly 

distributed between 900 and 1800 cm-1 was recorded. The 

spectra are considered as the objects to be clustered. 

Figure 1 shows the HE image of the section adjacent to the 

one analyzed by IR imaging and annotated by a pathologist who 

is able to distinguish 4 different structures: stratum corneum (1), 

epidermis (2), dermis (3) and tumor nests (4). The dermis is 

known to be heterogeneous and can thus be decomposed into 

several clusters [4, 11]. 

 

6.2. Validity indices and m=2 
 

We run validity indices with m=2 as traditionally described in 

literature. The estimated optimal numbers of clusters Copt 

are presented in the second column of table 1. The majority of 

the validity indices estimates Copt=2. Figure 2 shows the clusters 

estimated by FCM with such parameters. Cluster 2 represents 

mainly the dermis, while the epidermis and the tumor nests are 

merged in cluster 1. For 3 clusters such as estimated by VVI, the 

results are the same except that the dermis is divided into two 

clusters (data not shown). The other validity indices are 

optimized for Copt≥11 which induces a large number of 

redundant clusters (data not shown). FCM run with 11 clusters, 

such as estimated by VT, leads to 4 identical clusters 

representing both tumor nests and epidermis (cluster 1, figure 3), 

5 identical clusters of dermis (cluster 5, figure 3), and two 

supplementary different clusters of other dermis structures 

(clusters 10 and 11, figure 3). A m-value equal to 2 thus induces 

too much fuzziness for this spectral dataset in the FCM model 

and tumor nests cannot be separated from the epidermis. It is 

thus necessary to adapt the m-value to the studied dataset thanks 

to the use of the m-rules. 
 

Validity 

indices 

Copt for 

m=2 

Copt for 

m=1.1 

Copt for 

m=1.3 

Copt for 

m=1.9 

Copt for 

m=4.4 

VPC 2 2 2 2 2 

VPE 2 2 2 2 2 

VWPE 2 2 2 2 2 

VMPC 2 4 5 2 3 

VKKLL 2 10 5 2 2 

VP 2 4 5 2 3 

VFS 15 14 13 15 15 

VXB 2 4 3 2 10 

VKw 2 4 3 2 3 

VT 11 2 2 3 2 

VFSC 2 2 2 2 2 

VFHV 2 2 2 2 2 

VAPD 2 2 2 2 2 

VPD 2 2 3 2 2 

VPCAES 2 2 2 2 8 

VVI 3 4 5 3 15 

VCWBS 14 4 5 11 6 

VWSJ 14 4 5 13 10 

VPBMF 15 2 2 15 15 

VSTC 2 3 3 2 3 

VGD 2 4 3 2 3 

VOT 2 2 2 2 2 

VOS 2 5 5 2 11 

 
m-rules RDK ROK RFDO Rβ 

mopt for C=5 1.1 1.3 1.9 4.4 

 

4 
4 

1 

2 

3 

Table 2: Optimal m-value mopt estimated by the m-rules.  
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Figure 3: Membership values estimated by FCM for C=11 and m=2. 

 

 
 

6.3. Validity indices and m-rules 
 

RFDO and ROK being dependent on the number of clusters, we 

applied these rules by assessing that C=5 such as estimated by 

FCM-RBA and validated by a pathologist in another study [11]. 

The optimal m-values mopt estimated by the m-rules are 

presented in table 2.  

The optimal number of clusters Copt was estimated by each 

validity index for the optimal m-value mopt assessed by each m-

rule. The results are pooled in columns 3 to 6 of table 1.  

For mopt=4.4 as estimated by Rβ, it is clear that the results 

will be fuzziest than those estimated with m=2. For mopt=1.9 as 

estimated by RFDO, the same results as m=2 are obtained.  

For mopt=1.1 as estimated by RDK or mopt=1.3 as estimated 

by ROK, the majority of the validity indices is optimized for 

Copt≤5. Figure 4 shows the FCM results for Copt=5 and m=1.3 as 

estimated by ROK. Tumor nests and epidermis are still merged 

(cluster 1). Clusters 2, 3 and 4 represent different dermis 

structures. Cluster 5 is the stratum corneum.  

The other validity indices estimated Copt≥10. For such 

number of clusters, the tumor nests and the epidermis are 

isolated on different clusters as can be seen on figure 5 (clusters 

1 and 2 respectively). However, the dermis is divided on 5 

clusters, the stratum corneum on 2 clusters, and one cluster is 

composed of pixels at the interfaces stratum corneum/epidermis-

tumor and epidermis-tumor/dermis (data not shown).  

Only VKKLL combined with RDK, and VFS combined with 

RDK or ROK are able to retrieve clusters associated to the tumor 

nests. However, the number of clusters necessary to isolate the 

tumor nests is high, and the optimal m-values estimated by RDK 

and ROK are near from 1, which means that the obtained results 

are comparable to those obtained with KM in another study [4] 

on the same sample with an empirical estimation of the number 

of clusters.  

These results thus suggest that m-rules and validity indices 

are not adapted to this kind of data. 
 

6.4. FCM-RBA 
 

The curves Cbest(m,T) for the 12 different values of T 

obtained by FCM-RBA are presented on Figure 6. These 

curves rapidly decrease till a break which has been 

interpreted as a stabilization of the FCM solution. Thus, the 

best values of the parameters C and m are considered as 

being pointed out by the first break of each curve. Indeed, 7 

curves present their curve break for C=5 and m=1.6, and 5 

for C=5 and m=1.5 or 1.7. It must be known that making a 

clustering with a variation of 0.1 on the m-value doesn’t 

change much the FCM results. Consequently, the best 

parameters are chosen as C=5 and m=1.6. Figure 7 presents 

the gray scale images obtained by FCM run with those 

parameters. Estimated clusters represent all the different 

tissue structures of the biopsy which were observed by the 

pathologist: the dermis, divided into three clusters because 

of its heterogeneity, the epidermis and the tumor nests. The 

interested reader can refer to [4] in order to access to the 

KM results obtained on this biopsy. 
 

6.5. Discussion 
 

The majority of validity indices used in this study is 

initialization dependent. On the contrary, our new method is 

more robust against initialization because the determination 

of the relevant FCM parameters is based on several curve 

breaks (one for each threshold value) and not on a unique 

maximum or minimum value such as the validity indices. 

Furthermore, our method has been developed in order 

to simultaneously estimate m and C, while validity indices 

Figure 5: Membership values estimated by FCM for C=10 and m=1.1. 

Only the first 2 clusters are shown. 

 

cluster 1 

 
cluster 2 

 

Figure 4: Membership values estimated by FCM for C=5 and m=1.3. 

 

cluster 1 cluster 2 

cluster 3 cluster 4 

cluster 5 

cluster 1 cluster 5 

cluster 10 cluster 11 
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Figure 7: Membership values estimated by FCM for the parameters 

values given by FCM-RBA. 

 

Figure 6: Curves Cbest(m,T) for the 12 different values of T estimated by 

FCM-RBA allowing identification of Copt and mopt. 

 

cluster 2 

 
cluster 1 

 

cluster 4 

 
cluster 3 

 

cluster 5 

 

and m-rules have been developed ones independently from 

the others. 

The main improvement is that, compared to the 

algorithm proposed in [11], the algorithm presented in this 

article is 8 times faster. This is due to a considerable 

diminution of the number of computed FCM. Indeed, many 

irrelevant settings of FCM are avoided, and interruption of 

FCM is imposed when redundant clusters are estimated. 

These results were also validated on a group of 15 

other biopsies representing several types of skin tumors 

(results not shown here due to the lack of place).  
 

7. CONCLUSION 
 

FCM is a clustering method that is well adapted to the 

analysis of IR spectral images acquired on human skin 

tumors. The FCM parameters, i.e. the number of clusters and 

the fuzziness parameter, must be carefully chosen. Several 

validity indices and m-rules have been proposed in the 

literature to overcome this selection problem. They have 

been compared in this paper to a new heuristic method based 

on the redundancy of clusters estimated by FCM. Our 

proposed method, named FCM-RBA, leads to better results 

in term of quality than those obtained with the validity 

indices combined to the m-rules. Indeed, this method is 

qualitatively more efficient as shown on a real dataset. Each 

cluster represents a unique tissue structure composing the 

biopsy, enabling an easy localization and characterization of 

the tumor. Moreover, the heterogeneity and the possible 

transitions between tissue structures could be highlighted, 

which cannot be realized with KM algorithm or, in most of 

cases, with a classical HE image analyzed by a pathologist. 

That's the reason why this new kind of information is of very 

important interest from a biomedical point of view. 
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