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ABSTRACT

Methods based on frequency-domain independent compo-
nent analysis (ICA) in junction with state coherence trans-
form (SCT) have been shown to be robust for extracting
source location information like direction of Arrival (DOA)
in highly reverberant environments and in the presence of
spatial aliasing. Also, by exploiting the frequency sparsity of
the sources, such methods have proven to be effective when
the number of simultaneous sources is larger than the number
of microphones. In many real world problems the number of
concurrent speakers is unknown and varies with time as new
speakers can appear and existing speakers can disappear or
undergo silence periods. In order to deal with this challenging
scenario of unknown time-varying number of speakers, we
propose the use of the probability hypothesis density (PHD)
filter which is based on random finite sets (RFS), where the
multi-target states and the number of targets are integrated
to form a set-valued variable. The tracking capabilities of
the proposed method is demonstrated using simulations of
multiple sources in reverberant environments.

Index Terms— Blind source separation, independent
component analysis, source localization, multi-target track-
ing, probability hypothesis density

1. INTRODUCTION

Passive localization and tracking of multiple acoustical
sources is of great interest in the field of microphone arrays
which is driven by applications such as automatic camera
steering for teleconferencing and surveillance. Speaker lo-
calization is also very useful in aiding systems achieving
the task of separating concurrent speakers or desired speaker
from background interference which can be used in applica-
tions such as high-quality hearing aids, speech enhancement
and noise reduction for smart phones. By localization, one
can refer to finding the bearings of the speakers or their Carte-
sian coordinate. In this paper we are particularly interested in
estimating the multiple bearing information or the direction
of arrival (DOA) by means of the time difference of arrival
(TDOA).

Multiple TDOA estimation using frequency domain in-
dependent component analysis (ICA) was first proposed in
[1]. In the context of blind source separation (BSS), ICA is a
well known tool for the separation of linear and instantaneous
mixed signals picked up by multiple sensors [2]. ICA esti-
mates a de-mixing matrix for the separation task. For many
real world problems, the signals undergo a convoluted mix-
ing due to reverberation. By transforming the mixture to the
frequency domain by use of the short-time Fourier transform
(STFT), convolution in the time domain translates to linear
mixing in the frequency domain. Subsequently, ICA can be
performed on every single frequency bin. Since ICA is in-
determinate of source permutation, further post processing
methods are necessary to correct for possible permutations of
the separated sources in each frequency bin. In [1], multiple
TDOAs are calculated directly from the columns of the esti-
mated mixing matrix. However, this method works well only
if the possible source permutations in the frequency bins have
been corrected and there are no frequency bins effected by
spatial aliasing. Recently an extension to [1] has been pro-
posed under the name of state coherence transform (SCT)
that does not require permutation correction and is insensi-
tive to spatial aliasing [3]. SCT is a scanning method which
forms a pseudo-likelihood between the propagation model of
the TDOA scan points and the propagation pertaining to the
columns of the estimated mixing matrices obtained from ICA,
therefore exposing their phase coherence. One attractive fea-
ture of SCT is that by exploiting the frequency sparsity of the
sources, it is effective even when the number of simultaneous
sources is larger than the number of sensors.

Assuming that the number of sources is known and fixed
in time, some methods exist that track the location informa-
tion for each source by incorporating a separate tracker for
each source [4]. However, in many real world problems, not
only do the states of the sources change with time, the num-
ber of concurrent sources is unknown and varies with time as
new speakers can appear and existing speakers can disappear
or undergo long silence periods. Moreover, the sensors can
receive a set of spurious detections (clutter) due to the multi-
path propagation caused by reverberation and spatial aliasing.
Recently, random finite sets (RFS) have allowed the prob-
lem of multi-target tracking with uncertainty in target number
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to be posed in an optimal Bayesian filtering framework, one
that is the extension of the well known single target Bayesian
framework [5]. Using RFSs, the multi-target states and the
number of targets are integrated to form a set-valued variable.
However, the optimal RFS Bayes filter is computationally in-
tractable as it becomes a combinatorial problem on the num-
ber of targets. The probability hypothesis density (PHD) filter
is a suboptimal approximation to the RFS Bayes filter which
propagates the first moment of multi-target posterior density
rather than the full posterior density [5]. This said, the PHD
filter still involves multiple integrals with no closed form so-
lution in general. Also, the PHD filter in itself, does not solve
the data association problem indicating which estimate be-
longs to which target. The Gaussian mixture implementation
of the PHD filter (GM-PHD) alleviates these two difficulties
for when the targets follow a linear/Gaussian dynamic model
[6, 7].

The problem of extracting location information of un-
known time-varying number of speakers using RFSs and
PHD filtering have been proposed before. These methods,
however, use the generalized cross-correlation phase trans-
form (GCC-PHAT) in the front-end to obtain the measure-
ments, hence bearing the inherent limitations of GCC-PHAT
for multiple sources. One limitation is that it is not able to
obtain reliable detections as the number of concurrent speak-
ers increases [8]. Other methods exit that use ICA/SCT in the
front-end but use a naive thresholding approach to estimate
the number of targets [9]. In this paper we propose the use of
the best of both methods, that is the use of ICA/SCT in the
front-end and the use of the GM-PHD in the back-end.

2. FREQUENCY DOMAIN BSS AND SCT

We assume there are L microphones in the array and M
sources. After taking the short time Fourier transform (STFT)
of the convolutedly mixed (due to reverberation) signals, the
observations would end up having a linear mixture represen-
tation in each frequency bin k and frame n:

Y (k, n) = H(k)S(k, n) (1)

where sensors Y (k, n) = [Y1(k, n)...YL(k, n)]
T , sources

S(k, n) = [S1(k, n)...SM (k, n)]
T and H(k) is the mixing

matrix corresponding to the kth frequency bin. From here-
after, we will omit the index n for brevity. For the case of
L = M , complex-valued ICA can be applied to each fre-
quency bin to estimate the inverse of the mixing matrix H (k).
Denoting the estimate of the separated sources at the kth bin
as Ŝ(k), from ICA we get

Ŝ(k) = Ŵ (k)Y (k) (2)

where Ŵ (k) denotes the estimate of the demixing matrix
up to scaling and permutation ambiguities. Without loss of
generality, for simplicity, we consider a configuration of two

sources and two sensors. In an ideal anechoic setting the true
mixing matrix can be modeled as

H(k) =

(

|h11(k)|e
−j2πfkT11 |h12(k)|e

−j2πfkT12

|h21(k)|e−j2πfkT21 |h22(k)|e−j2πfkT22

)

(3)

where Tqp is the propagation time from the pth source and the
qth microphone and fk is the frequency in Hz for the kth fre-
quency bin. By neglecting the permutation problem for now
but taking into account the scaling ambiguity, the estimate of
the inverse of the demixing matrix becomes

Ŵ−1(k) =

(

η1|ĥ11(k)|e
−j2πfkT̂11 η2|ĥ12(k)|e

−j2πfkT̂12

η1|ĥ21(k)|e
−j2πfkT̂21 η2|ĥ22(k)|e

−j2πfkT̂22

)

(4)

where ηi represents the diagonal entries of the arbitrary scal-
ing matrix. By making a farfield assumption for the sources
and neglecting reverberation, the TDOA information emerges
by taking the ratios of the entries of each column in (4)

r1(k) =
|ĥ11(k)|

|ĥ21(k)|
e−j2πfk∆̂t1 , r2(k) =

|ĥ12(k)|

|ĥ22(k)|
e−j2πfk∆̂t2

(5)

where ∆̂ti are the TDOAs of the sources with respect to the
microphones. As it can be seen from (5), such ratios are in-
variant to the scaling ambiguities of the estimation process.
Since the TDOA information resides only in the phase of the
ratios in (5) and is invariant to scaling and magnitude, the ra-
tios can be simplified as

r̄1(k) =
r1(k)

|r1(k)|
, r̄2(k) =

r2(k)

|r2(k)|
(6)

If the permutation of the sources can be somehow corrected
and if the mixing does not undergo spatial aliasing , the
TDOAs of the sources can be estimated directly from phase
information of (6) by exploiting the linear relationship be-
tween the TDOAs and the true frequencies along the different
bins [1]. However, solving the permutation problem and deal-
ing with spatial aliasing can prove to be difficult in practice.
SCT is a method that can sidestep these issues by forming
a pseudo-likelihood between the TDOA observations in (5)
and a propagation model that can intrinsically account for
both permutations and spatial aliasing [3]. The propagation
model that results in TDOA of a source with respect to the
microphones, denoted as τ , is assumed to be

c(k, τ) = e−j2πfkτ (7)

The SCT for the configuration of two sources and two micro-
phones is formulated to be

SCT (τ) =
∑

k

2
∑

m=1

[

1− g

(

‖c(k, τ)− r̄m(k)‖

2

)]

(8)
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where the transform is scanned for different values of τ and
g(.) is a function of the Euclidian distance. A good option
for g(.) is shown to have a sigmoidal shape such as g(x) =
tanh(αx), where α is a real positive constant that defines the
TDOA sensitivity and is usually set empirically. It can be
easily understood from (8) that one could expect to see higher
mappings of SCT for values of τ which rm(k) and the model
c(k, τ) are closer in some Euclidian form of distance, thus
creating peaks for values of τ matching the TDOAs. One im-
portant feature of SCT is that it is invariant to source permuta-
tions since it jointly utilizes the TDOA information of all the
ratios in (6) across all frequencies. On the other hand, since
the model c(k, τ) incorporates the 2π phase wrap-arounds
(i.e. it is periodic for 2π shifts in τ ) caused by spatial alias-
ing it greatly reduces its sensitivity towards spatial aliasing.
Moreover, one feature of SCT that makes it an attractive plat-
form for tracking unknown time-varying number of sources,
is that it is able to map the TDOA peaks for the underde-
termined or overcomplete case of having more sources than
microphones. This is achieved by partitioning the data (STFT
frames) into small blocks and performing ICA/SCT on each
data block. For example, by exploiting the frequency spar-
sity of the sources (which is typical of speech) in each data
block, and assuming that at each frequency-block segment
at most two sources are active, a complete TDOA mapping
with peaks pertaining to the possible sources becomes possi-
ble. From the far-field assumption, one can convert TDOA
detections into DOA using

θ = cos−1(c∆t/∆q) (9)

where c is the speed of sound and ∆q is the distance between
the microphone pair.

It is noteworthy to say that even though the SCT prop-
agation model only considers the direct path in an anechoic
setting, nonetheless, it is still shown to be effective for multi-
path propagation due to reverberation. The reason for this
is that in a reverberant environment the direct path between
the source and the microphone is usually dominant over other
multi-path propagations. As the amount of reverberation in-
creases the chance of multi-paths creating peaks in the SCT
increases as well. This is why for our problem of tracking
the DOA of unknown time-varying number of sources, a suit-
able filtering technique is needed to reject clutter caused by
multi-path propagations.

3. BAYESIAN MULTI-TARGET TRACKING AND
PHD FILTERING

Let us consider the multi-target scenario of having M(t− 1)
targets at time t − 1 with states xt−1,1, ..., xt−1,M(t−1) tak-
ing values in the state space X . At the next instance of time,
t, some of the targets can die, some new targets can be born
and the surviving targets can evolve according to some dy-
namic model. This results inM(t) targets at time twith states

xt, ..., xt,M(t) ∈ X . On the other hand, let’s assume that
at time t, the sensor makes N(t) observations (detections)
zt,1, ..., zt,N(t) each taking values in the state space Z . These
detections are ambiguous in the sense that it is not known
whether they have originated from targets or are false detec-
tions (clutter). Moreover, due to the imperfections in the sen-
sor resolution it is possible that any subset of targets not get
detected (missed detections). Assuming that the ordering and
association of the measurements and the state estimates has
no significance, the multi-target states and observations can
be represented as finite sets such as

Xt ={xt, ..., xt,M(t)} ∈ F(X ) (10)
Zt ={zt, ..., zt,N(t)} ∈ F(Z) (11)

where F(X ) and F(Z) are finite subsets of the spaces of
X and Z , respectively. By assuming that the multi-target
RFS state X(t) is the union of surviving targets, spontaneous
births and spawned targets, and the muti-target detection RFS
state Z(t) is the union of target generated detections and clut-
ter, the goal of Mahler’s RFS mutli-target filtering [5] is to
estimate the number of targets and their states while rejecting
clutter and accounting for missed detections. With the RFS
formulation, the multi-target Bayesian filter can be computed
sequentially via the prediction and update steps as following

ft|t−1(Xt|Z1:t−1) =

∫

ft|t−1(Xt|X
′)ft−1|t−1(X

′|Z1:t−1)δX
′

(12)

ft|t(Xt|Z1:t) =
ft|t(Zt|Xt)ft|t−1(Xt|Z1:t−1)

∫

ft|t(Zt|X ′
t)ft|t−1(X

′
t|Z1:t−1)δX ′

t

(13)

where Z1:t is the series of all previous measurements up to
time t and δ is an appropriate reference measure on F(X )
which indicates that the integrals are set-integrals. A set-
integral is a non-trivial extension of a regular integral which
is defined as a mixture of regular integrals over all different
subsets of the multi-target states. This accounts for the un-
certainty in the target number which can vary over time as
new targets enter and old ones vanish. Due to the use of com-
binatorial set-integrals in the optimal Bayesian recursions of
(12-13), they involve multiple high dimensional integrals on
the space F(X ) rendering it computationally intractable. The
PHD filter is a suboptimal approximation to the multi-target
Bayesian recursions of (12-13) which instead of propagating
the full posterior density, it propagates the first moment of
multi-target posterior density, known as the posterior inten-
sity [5] .

Let Dt|t−1(xt|Z1:t−1) and Dt|t(xt|Z1:t) denote the
respective PHD intensities of the multi-target predictive
posterior ft|t−1(Xt|Z1:t−1) and the multi-target posterior
ft|t(Xt|Z1:t) of equations (12-13). It is worthy to note that
due to the first order moment mapping of the PHD filter,
Dt|t(xt|Z1:t) is an intensity function on the single target
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space X0. This PHD intensity function is not in the form
of a probability density function (pdf) as its integral does
not equate to unity. Under certain assumptions [5], the PHD
intensities can be recursively estimated as follows

Dt|t−1(xt|Z1:t−1) =

∫

Ft|t−1(x
′|xt−1)Dt−1|t−1(x

′|Z1:t−1)dx
′

+ bt(xt) (14)

Dt|t(xt|Z1:t) = [1− pD(xt)]Dt|t−1(xt|Z1:t−1)+

∑

zt∈Zt

ψzt(xt)Dt|t−1(xt|Z1:t−1)

κt(zt) +
∫

ψzt(ζ)Dt|t−1(ζ|Z1:t−1)dζ
(15)

In the prediction equation (14)

Ft|t−1(xt|xt−1) = pS(xt−1)fk|k(xt|xt−1) + βt|t−1(xt|xt−1)
(16)

where fk|k(xt|xt−1) is the single target transition pdf, pS is
the probability of target survival and βt|t−1 is the intensity of
target spawned from targets at time t − 1. Also in (14), bt
is the intensity of spontaneous new births at time t. In the
update equation (15),

ψzt(xt) = pD(xt)g(zt|xt) (17)

where PD is the probability of detection, g(zt|xt) is the single
target detection likelihood model (i.e. observation model in
the space of X0) and the intensity of clutter points κt(zt) is
given as

κt(zt) = λct(zt) (18)

where λ is the average number of Poisson-distributed false
alarms and ct(z) is the spatial distribution of clutter. As we
mentioned before the PHD intensity function is not a pdf and
fact it turns out that the integral of the PHD intensity gives the
expected number of targets [5]

M̂t|t =

∫

Dt|t(xt|Z1:t)dxt (19)

At the end, the multi-target state estimates are extracted by
finding the M̂t|t peaks of Dt|t(xt|Z1:t).

Even though the PHD filter is much less computationally
expensive compared to the multi-target recursions of (12-13),
the integrals present in the PHD recursions of (14-15) result
in it not having a closed form solution in general. Therefore,
Sequential Monte Carlo (SMC) methods are usually used to
approximate the integrals in the PHD filter. However, for
the special case where the target dynamics follow a linear
Gaussian model, a Gaussian mixture(GM) implementation
can provide a closed form solution to the PHD filter [6]. The
GM-PHD does not suffer from the complexities of sampling
and resampling in SMC methods and due to its closed form
solution, it is more accurate. In this paper, since our mea-
surements and target state dynamic follow a linear/Gaussian
model, GM-PHD is used for the multi-source filtering.

4. SYSTEM INTEGRATION

In the previous two sections we described the front-end
(ICA/SCT) and the back-end (PHD filtering) of our sys-
tem model, respectively. The front-end uses the output of
ICA to perform the SCT mapping where peaks that are above
some detection threshold are selected. These peaks are de-
clared as DOA measurements or detections and are fed into
the PHD filter. The PHD filter then filters the measurements
and estimates the DOA and number of targets using the GM-
PHD filter assuming that the state dynamics and sensor model
follow a linear/Gaussian model such as

ft|t−1(θt|θt−1) =N (θt; θt−1, Qt−1) (20)
g(zt|θt) =N (zt; θt, Rt) (21)

Fig.1 illustrates the system model incorporating ICA/SCT
with PHD filtering. From Fig.1 it can be seen that ICA is per-
formed in blocks of data in which each block is a collection
of a certain number of STFT frames. Note that the time index
of the sensor raw data is u, the frame index after converting
to the frequency domain using STFT is n and the block index
for a collection of frames is t. Any complex-valued ICA al-
gorithm can be used. In this case we use the complex-valued
maximum-likelihood Infomax ICA [2]. The initialization of
the ICA stage performed on each block is done from scratch
and not based on the previous block convergences. This is to
encourage diversity in the ICA estimates so if a source dies
out or a new source is born, such dynamics can be picked up
by ICA and translated to meaningful location information via
SCT.

5. SIMULATIONS

The proposed method was conducted on simulated data ob-
tained from Lehmann’s image method [10]. Signals were
sampled at fs = 16kHz and the STFT frequency-frame
segments were obtained using a Hanning window of 2048
taps and 75% overlap. The blocks in which the ICA was
conducted on had a 50% overlap with each block being about
0.4 seconds in length. The experiment went on for a total
duration of about 18 seconds. The room dimensions were
8m× 5m× 3.5m with a reverberation time of T60 = 600ms.
Only L = 2 microphones were used which were placed
36cm apart. The speakers could appear and disappear at
any time. There were a total of 7 different speakers with the
maximum number of 6 concurrent speakers. The speakers
all moved along a half-circular path about 1.5m from the
microphone pair. Fig.2 shows the DOA detections and the
true source DOAs along with their estimated tracks . The
tracks labels were calculated using an extension to the GM-
PHD filter [7]. The performance of the proposed method is
compared with two alternative approaches discussed earlier.
One method uses the GCC-PHAT at the front-end to acquire
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detection measurements and uses the same PHD filter at the
back-end for the filtering, similar to [8]. The other method
uses ICA/SCT at front end and a naive thresholding method
for selection of the peaks, similar to [9]. The Wasserstein
distance which is a multi-target error metric for time-varying
number of targets is used to evaluate the performances [5].
The proposed method had a mean Wasserstein error of 12.34
while the ”GCC-PHAT+PHD filtering” method had a mean
error of 23.99 and the ”ICA/SCT+naive thresholding” had a
mean error of 20.85. It is worthy to note that the proposed
method shares the back-end (GM-PHD filtering) with the
first method and the front-end (ICA/SCT) with the second
method, therefore a better performance of the proposed com-
pared to the other two methods implies it is incorporating the
best of both approaches.

Fig. 1. Block diagram of proposed method: STFT, ICA and
SCT segments form the front-end and the PHD filtering seg-
ment form the back-end.

6. CONCLUSIONS

In this paper we present a novel framework to solve the prob-
lem of tracking the DOAs of unknown time-varying number
of speakers using minimal number of microphones in a rever-
berant environment. We proposed the integration of a pow-
erful and versatile scanning method for multiple DOA esti-
mation with a well known method in radar/sonar multi-target
tracking. Such a combination showed promising results in
the DOA estimation task of up to 6 concurrent speakers in
relatively high reverberant environment using only 2 micro-
phones. Future investigation will address the separation prob-
lem of unknown time-varying number of sources using a sim-
ilar framework.
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Fig. 2. True (colored lines), SCT peaks or detections (dots)
and estiamted tracks (colored shapes)
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