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ABSTRACT

In this paper the earlier proposed short-time objective intelli-

gibility predictor (STOI) is simplified such that it can be ex-

pressed as a weighted ℓ2 norm in the auditory domain. Due

to the mathematical properties of a norm, STOI can now be

used with the matching pursuit algorithm in the n-of-m chan-

nel selection technique as found in several cochlear implant

(CI) coding strategies. With this technique only a subset of

frequency channels (electrodes) are stimulated, such that im-

portant channels can be updated more frequently and less sig-

nificant channels are omitted. Intelligibility predictions with

acoustic CI-simulations for normal-hearing listeners indicate

that more intelligible speech is obtained with the proposed

method compared to a conventional channel selection method

based on peak picking. Reasons for this difference in perfor-

mance are: (1) STOI considers an analysis window of a few

hundreds of milliseconds in order to account for important

low temporal modulations for speech intelligibility and (2)

spectral leakage per channel is accounted for in the mathe-

matical optimization process.

Index Terms— Speech intelligibility metric, matching

pursuit, cochlear implants, channel selection.

1. INTRODUCTION

Reliable machine-driven predictors of speech intelligibly are

of great interest in the design process of new speech process-

ing algorithms, e.g., as used in mobile telephony, hearing aids

or cochlear implants (CIs). They might replace costly and

time consuming listening tests, at least in some stages of the

algorithm development process. The drawback of many intel-

ligibility predictors is that they are complex [1, 2] and do not

have certain (mathematical) properties in order to derive opti-

mal signal processing solutions, e.g., least-squares solutions.

In previous work we proposed a short-time objective intelligi-

bility (STOI) measure which can accurately predict the effect

of background noise and various (non-)linear speech process-

ing algorithms on speech intelligibility [3]. We will show

∗This work was funded by the European Commission within the Marie

Curie ITN AUDIS, grant PITNGA-2008-214699.

that STOI can be simplified to a weighted ℓ2 norm in the

auditory domain which makes the measure mathematically

tractable. Since STOI shows high correlation with the intel-

ligibility of vocoded speech [3], as typically used in acous-

tic CI-simulations, the norm will be applied in the channel-

selection technique with CI simulations [4, 5].

The channel-selection technique is also referred to as

the n-of-m strategy where n channels of the available m

frequency channels (electrodes) are stimulated, such that im-

portant channels can be updated more frequently and less

significant channels are omitted. Different strategies exist to

select those channels, e.g., based on peak-picking [6], psy-

choacoustic models [7] and other techniques [4]. However,

those techniques optimize for certain (psychoacoustic) cri-

teria which exclude important properties relevant for speech

intelligibility [8]. For example, criteria relevant for speech

intelligibility should take into account temporal modulation

frequencies important for intelligibility (4-32 Hz) [9] and

correlation based comparisons should be used rather than

comparisons based on squared errors [8]. The proposed norm

based on STOI takes into account these aspects.

Due to the mathematical properties of a norm, the channel

selection can now be solved in an optimal manner for STOI

with the matching pursuit algorithm [10]. Within this frame-

work the electrical spread per electrode can also be easily

taken into account, which is typically not part of the optimiza-

tion process in existing n-of-m strategies. It will be shown

that the proposed method leads to more intelligible speech

compared to a general peak-picking algorithm by means of

acoustical CI-simulations with normal-hearing listeners.

2. DERIVATION OF INTELLIGIBILITY METRIC

We will first introduce a general notation and explain the au-

ditory model as used in STOI. Let x (n) and y (n) denote

a clean and degraded speech signal, respectively, with time-

sample index n, where y is a vocoded version of x. A basic

auditory model is applied to both signals in order to obtain

an internal representation. Here, we only explain the notation

for the internal representation of x. Similar definitions hold
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for y. Let x̂m (k) denote the kth DFT-bin of xwm, where

wm denotes a Hann-window function with frame-index m.

Here, a frame length of 16 ms is used with 50% overlap. The

short-time DFT spectrum is converted into auditory bands as

follows:

Xi,m =
∑

k

∣∣∣ĥi (k)x̂m (k)
∣∣∣
2

, (1)

where i denotes the auditory band index and ĥi represents

an approximation of the magnitude response of a 4th order

gammatone filter as described in [11]. The value Xi,m will

be referred to as a time-frequency (TF) unit. In total, 32 fil-

ters are used with center frequencies linearly spaced on an

ERB scale between 150 and 5000 Hz. STOI compares the

clean and degraded speech in the auditory domain in blocks

of approximately 400 milliseconds (see next section for more

details). The following vector notation is used to denote such

a block within one auditory band,

xi,m=
[
Xi,m−M+1 Xi,m−M+2 · · · Xi,m

]T
, (2)

where M can be used to control the length of such a speech

segment, depending on the sample rate and window size. In

this work, a sample rate of 16 kHz is used where M = 48.

Vectors are concatenated over all auditory bands to denote a

complete TF-block as:

xm =
[
xT
1,m xT

2,m · · · xT
I,m

]T
, (3)

where I = 32 denotes the total amount of auditory filters.

The operator notation xm = Im {x} is used to denote the

complete transform from the time-domain to one TF-block in

the auditory domain.

2.1. STOI Background and Simplification

As proposed in STOI [3], an intermediate measure relevant

for speech intelligibility of one TF-unit is defined as the sam-

ple correlation coefficient between the clean (xi,m) and de-

graded (yi,m) speech temporal band envelopes in one block.

Blocks of a few hundreds of milliseconds are used to include

important modulation frequencies for intelligibility [9]. The

correlation coefficient is used, rather than, e.g., a squared er-

ror, to make sure that the measure is insensitive to band-level

differences between x and y, which should not have a strong

impact on speech intelligibility [8]. To simplify, the correla-

tion coefficient is defined on the magnitude squared envelopes

rather than the magnitude envelopes, as was originally pro-

posed in STOI [3]. The benefit of this choice will become

clear in Section 4. This gives:

ρi,m (x, y) =

〈
xi,m − µxi,m

,yi,m − µyi,m

〉

σxi,m
σyi,m

, (4)

where 〈·, ·〉 denotes the inner product with ‖·‖ as its in-

duced ℓ2-norm, µxi,m
the sample mean of xi,m and σxi,m

=∥∥xi,m − µxi,m

∥∥. Similar definitions hold for the degraded

speech. The correlation coefficients ρi,m(x, y) are then com-

bined into one number by computing its average over all

TF-units:

D =
1

M
∑

i,m

ρi,m (x, y), (5)

where M denotes the total number of TF-blocks. It is ex-

pected that D is a monotonically increasing function of the

speech intelligibility of y. In computing D only those TF-

blocks are considered in the summation where speech is

present, see [3] for more details. An additional clipping pro-

cedure in STOI, which was included to limit the intermediate

intelligibility range, is discarded in this work for simplicity.

2.2. Interpretation as weighted ℓ2 norm

To rewrite the intelligibility measure as a norm we first ex-

press (4) as an inner product:

ρi,m (x, y) = 〈x̄i,m, ȳi,m〉 , (6)

where a general normalization procedure is denoted by (̄·) =(
(·)− µ(·)

)/
σ(·). Hence, the inner product 〈x̄i,m, ȳi,m〉 can

be used to induce the following norm:

‖x̄i,m − ȳi,m‖2 = ‖x̄i,m‖2 + ‖ȳi,m‖2 − 2 〈x̄i,m, ȳi,m〉
= 2− 2ρi,m (x, y).

(7)

It can now be observed that maximizing ρi,m implies mini-

mizing the norm ‖x̄i,m − ȳi,m‖2. However, its minimizing

argument only determines the optimal yi,m up to a scaling

σyi,m
and amplitude shift µyi,m

. In this work we aim for the

solution where the clean speech is the target, with the assump-

tion that µxi,m
≈ µyi,m

and σxi,m
≈ σyi,m

. This is motivated

by the fact that we are working in blocks of a few hundreds

of milliseconds, and it is expected that the errors introduced

to yi,m will average to a minimal impact when summing over

all its elements in the calculation of the scaling σyi,m
and am-

plitude shift µyi,m
. This gives:

‖x̄i,m − ȳi,m‖2 ≈ ‖ai,m (xi,m − yi,m)‖2 (8)

where ai,m = σ−1
xi,m

. By vector concatenation as in (3) the

summation over frequency i in (5) can be replaced by defin-

ing a new norm over a complete TF-block. First, a diagonal

weighting matrix is defined as:

Am = diag
(
a1,mIM a2,mIM · · · aI,mIM

)
, (9)

where IM is the identity matrix of size M . A weighted norm

for one TF-block is then given as follows:
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‖Am (xm − ym)‖2 =
∑

i

‖ai,m (xi,m − yi,m)‖2. (10)

These weighted norms are then combined by a summation

over time, where for optimization purposes the averaging con-

stant M in (5) can be discarded. Note that Am is only a func-

tion of the clean speech xm. As a result, it only has to be

calculated once for each frame after which the norm can be

evaluated for any arbitrary ym.

3. APPLICATION TO CI CHANNEL SELECTION

The proposed intelligibility metric will be used in the CI

channel-selection technique with the matching pursuit algo-

rithm [10]. With this algorithm, a signal x is synthesized

as a weighted sum of functions (sometimes called atoms or

elements) which are chosen from a dictionary [10]. The algo-

rithm is iterative, where for each iteration p the best matching

function g from the dictionary D is chosen and subtracted

from the residual at the previous iteration. Since only one

element is considered per iteration, the algorithm is greedy.

The eventual synthesized speech signal can be described by:

x ≈
∑

p

α(p)g(p), (11)

where the selection of the best dictionary element and weight-

ing coefficient α is based on minimizing some norm of the

eventual residual r. For the (p+ 1)
th

iteration this residual is

given as follows:

r(p+1) = r(p) − α(p)g(p), (12)

where for the first iteration the residual is taken equal to the

target signal, i.e, r(1) = x. The optimal solution for the

weighting coefficient and selection of the dictionary element

in each iteration is given by [10],

α(p) =
〈g(p),r(p)〉
‖g(p)‖2

g(p) = argmax
g∈D

|〈g,r(p)〉|
‖g‖

(13)

3.1. Intelligibility Relevant Matching Pursuit

Since all diagonal elements of Am in (10) are real and posi-

tive a new norm relevant for speech intelligibility can be de-

fined, say ‖·‖Am
, which is induced from the following inner

product:

〈xm,ym〉Am
= 〈Amxm,Amym〉 . (14)

Now we can insert the proposed norm and inner product based

on STOI in (12) and (13). Here, the dictionary will be defined

by D = g(γ)γ∈Γ, where Γ denotes the set of CI frequency

channel indices. Each element represents the internal repre-

sentation of a short-time pulse within a specific CI channel

and will be used to model xm. One can choose the dictionary

according to the properties of the CI and include aspects like

the pulse duration, channel center frequencies or the amount

of current spread. To imply low algorithmic delay no future

time-samples are taken into account in these internal repre-

sentations for a given pulse.

For the first iteration where no channel selection has been

made yet, the residual is set to r
(1)
m = xm, where for the next

iterations we have:

r(p+1)
m = r(p)m − α(p)g(p). (15)

The solution for the best dictionary element and optimal

weighting for each iteration relevant for the proposed metric

is then given by:

α(p) =
〈g(p),r(p)m 〉

Am

‖g(p)‖2

Am

g(p) = argmax
g∈D

∣

∣

∣〈g,r(p)m 〉
Am

∣

∣

∣

‖g‖
Am

.

(16)

After the channels have been selected, the eventual residual

rm is stored and shifted one time-frame over m for the initial

residual r
(1)
m+1. In this manner, past channel selections are also

taken into account for the decisions of the current time-frame.

4. VOCODER DETAILS

CI simulations are performed with a vocoder based on sinu-

soidal carriers similar to [5]. In this vocoder 20 channels are

used with logarithmically spaced frequencies between 150-

5000 Hz. Each sinusoid is segmented into 8 ms length, 50%

overlap Hann-windowed frames, which implies a channel

simulation rate of 250 Hz. Note that these settings simulate

the properties of the CI-processor and are chosen indepen-

dently of the auditory model from Section 2.

First we will show that the time-domain additivity of the

TF-spaced sinusoids in the vocoder can be preserved in the

auditory domain, which validates the use of (11) in the au-

ditory domain. Let a scaled and TF-spaced sinusoid be de-

scribed as follows:

sγ (n) = aγ cos (ωγn+ φ)ws (n) , (17)

where ωγ and aγ denote the angular frequency and amplitude

for channel γ, respectively, and ws its window function (the

subscript s of this vocoder window is used to denote its dif-

ference with the auditory model window wm from Section

2). For readability, the vocoder relevant frame-index is omit-

ted and we assume that ws represents the current frame of

interest. Since the phase is of minor importance for intelligi-

bility in these short time frames [12], φ is assumed to be i.i.d.

uniformly distributed between 0 and 2π and only the average
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Fig. 1. Two example elements for each dictionary D1 and D2

where γ = {5, 15}. Left plots show realizations of sγ and

right plots the average internal representations.

internal representation is considered. The expected value of

sγ for one TF-unit in the auditory domain, as in (1), equals:

Eφ

[
(Sγ)i,m

]
=

1

2

∑

k

∣∣∣ĥ (k) ̂(wsejnωγ )m (k)
∣∣∣
2

. (18)

Moreover, the expected value of the internal representation of

a sum of weighted sinusoids is given by:

Eφ

[
Im

{∑

γ

aγsγ

}]
=

∑

γ

|aγ | 2Eφ [Im {sγ}], (19)

where the cross terms between the weighted sinusoids in the

auditory domain are zero due to the i.i.d. assumption. This

is a direct consequence of taking into account squared magni-

tudes in (1) rather than the squared root of this term. Hence,

the weighted sum of sinusoids results in a squared weighted

sum of average functions in the auditory domain. Note that

a realization of this internal representation is expected to be

close to its expected value, since the proposed metric dis-

cards all DFT-phase information in (1). Motivated by this,

each element in the dictionary D = g(γ)γ∈Γ is defined as

g (γ) = E [Im {sγ}]. The frame index m is taken equal to

the last frame which still overlaps with ws. This means that
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NCM
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Number of sinusoids
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Fig. 2. Prediction results for proposed matching pursuit (MP)

and peak picking (PP) algorithm (a higher score denotes more

intelligible speech). The predictors STOI [3], DAU [1] and

NCM [2] are all known to be reliable with vocoded speech.

the dictionary depends on the alignment between ws and the

chosen m. Since the support of wm (16 ms) is double the

support of ws (8 ms), two possible alignments exist for which

the dictionaries, say D1 and D2, can be pre-calculated and

stored. Two example dictionary elements are shown for both

dictionaries in Figure 1. This figure also illustrates how m is

chosen given ws by highlighting the windows of the auditory

model. The eventual vocoded speech signal for time-frame

ws is then synthesized as1 x ≈ ∑
p

√
α(p)sγ(p) .

5. EXPERIMENTAL RESULTS

The proposed matching pursuit (MP) algorithm is compared

with the peak-picking (PP) algorithm which is currently still

the basis of several existing coding strategies in CIs [4]. Sig-

nal processing details of the peak-picking algorithm can be

found in [5].

Three intelligibility predictors are used to assess the intel-

ligibility of MP and PP where the number of selected chan-

nels is varied between 1 and 5. These predictors consist of

STOI [3] (the model which was simplified in Section 2), a

model developed by Christiansen and Dau (DAU) [1] and the

normalized covariance metric (NCM) [2]. These measures

are recently proposed and can be considered as state-of-the-

art for intelligibility prediction of vocoded speech. The re-

sults are shown in Fig. 2 from which we can conclude that all

three measures predict that the intelligibility of MP is higher

than PP. A result which is in line with informal listening tests.

Largest improvements are predicted with STOI, which is not

that surprising since this is the measure initially used for op-

timization. NCM and DAU predict that the speech intelligi-

bility for MP with 1 sinusoid is roughly equal to the intel-

ligibility with PP for 2 and 3 sinusoids, respectively. In the

near-future real listening tests will be performed to quantify

the absolute difference between MP and PP.

1In rare cases it may occur that the optimal α for a specific iteration is

negative. Since a negative amplitude in the auditory domain does not have a

meaning in the time-domain these channels are discarded.
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Fig. 3. Auditory representations of clean and vocoded speech

and channel selection for MP and PP. One channel is selected

per time-instant for both algorithms.

The main differences between MP and PP are illustrated

in Figure 3, where one TF-block of clean speech is used and

only one channel was selected per time instant. For com-

parison, the clean internal representation is shown together

with the internal representations for both methods, denoted

by ym, and their corresponding channel selections. From the

plots it is clear that PP tends to select the same channel in-

dependently of the previous selected channel. As a result the

two formants between 0.1-0.2 seconds and channel 16-24 are

completely discarded with PP, which is not the case with MP.

There are two important reasons for this different behavior:

(1) The proposed metric has a longer integration time such

that channels selections from the past are taken into account

for the current channel selection. (2) The weighting matrix

Am ’whitens’ the speech and will therefore give a similar

importance to high frequencies compared to low frequency

content. Another important difference is the fact that the pro-

posed method considers the spread over time and frequency

of the sinusoids. Therefore, MP will less often select neigh-

boring channels compared to PP.

Note that the channel stimulation rates in real CI-processors

can be much higher than the rate of 250 Hz as used in the

vocoder from [5]. In a real CI also the channels are typi-

cally stimulated sequentially in an interleaved manner, rather

than simultaneously, in order to avoid electrical field interac-

tions [4]. These properties of the CI cannot be included in

a vocoder since no acoustical signals exist with such short-

time duration and narrow frequency support. It is important

to add, however, that these are constraints of the use of any

vocoder and not of the proposed channel selection method.

Namely, the dictionary can be easily extended to shorter pulse

durations in a real CI environment.

6. CONCLUDING REMARKS

In this paper it is shown that the existing short-time objective

intelligibility (STOI) measure can be expressed as a weighted

ℓ2 norm in the auditory domain. Due to the mathematical

properties of this norm it facilitated the use of the match-

ing pursuit algorithm in the channel selection technique in

cochlear implants (CIs). Acoustic CI simulations are gener-

ated based on a sinusoidal vocoder where a large intelligibility

improvement was found by three state-of-the-art intelligibil-

ity predictors compared to a peak-picking algorithm.
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