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Tudor-Cătălin Zorilă1, Varvara Kandia2, Yannis Stylianou2

1Telecommunication Department, Politehnica University of Bucharest (UPB), Romania
2ICS-FORTH and Computer Science Department, University of Crete, Heraklion, Crete, Greece

ztudorc@gmail.com, vkandia@ics.forth.gr, yannis@csd.uoc.gr

ABSTRACT

The ability to detect speech in noise plays a significant role

in our communication with others. In this work we suggest

to modify the original speech signal before this is presented

in the noisy environment by combining a signal to noise ratio

recovery approach with dynamic range compression in order

to improve the intelligibility of the speech in noise. The mod-

ification is performed under the constraint of equal global sig-

nal power before and after modifications. Experiments with

speech shaped (SSN) and competing speaker (CS) types of

noise at various low SNR values, show that the suggested ap-

proach outperforms state-of-the-art methods in terms of the

Speech Intelligibility Index (SII) as well as in informal listen-

ing tests. Comparing with a state-of-the-art method there is

an improvement of 4 dB and 8 dB in terms of SNR gain, for

the SSN and the CS types of noise, respectively.

Index Terms— speech in noise;speech modifica-

tions;SII;speech intelligibility

1. INTRODUCTION

Speech produced under real conditions (not in a recording

studio, nor in a quiet room) is not always intelligible due

to the presence of background noise. This noise may mask

part of the speech signal such that not all speech informa-

tion is available to the listener. The ability to detect speech

in noise plays a significant role during a conversation, or un-

derstanding an announcement at the airports or train stations.

Regarding conversations, it has been observed that there is an

involuntary tendency of speakers to increase their vocal effort

when speaking in loud noise to enhance the audibility of their

voice (Lombard effect or Lombard reflex [1]). In telecommu-

nications, it would be very beneficial for the listeners if the

phone devices could automatically detect the noise environ-

ment of the listener and modify accordingly talker’s speech

in order to improve the intelligibility of the transmitted sig-

nal. This is referred to as near end listening enhancement

problem [2]. Similar problems exist in broadcasting where

pre-transmission enhancement techniques are applied on the

baseband audio signal. In all these cases, the noise signal can

not be modified, simply because it belongs to the environment

where the listener is located. The remaining option, and as-

suming a speech reproduction system (i.e., announcements,

text-to-speech synthesis) or transmission channel (i.e., tele-

phone), is then to manipulate the produced speech signal in

order to improve its intelligibility for the listener.

In a series of papers, Sauert and Vary suggested many

speech enhancement approaches for improving the intelligi-

bility of speech in noise conditions assuming the noise is

known [2] [3]. In [2], the speech enhanced algorithm raised

the average speech spectrum over the average noise spec-

trum in order to recover a target signal-to-noise-ratio. In [3],

the enhancement algorithm is optimized with respect to the

Speech Intelligibility Index (SII) [4], under the constraint of

an unchanged average power of the speech signal. In very

early studies for near-end speech enhancement, Niederjohn

and Grotelueschen suggested a rapid amplitude compression

following by high-pass filtering for processing speech before

its reception by the listener [5].

For clear and Lombard speech it has been reported that

there is higher energy in the mid-frequency region of the fre-

quency spectrum [6] [7] [8] [9] comparing with casual and

non Lombard speech 1.

In the work of Hazan and Simpson, it has been shown

that selective reinforcement of bursts and vocalic onsets and

offsets can provide significant improvements to the intelligi-

bility of the subsequently degraded speech signal, even for

the same overall signal-to-noise ratio [10]. Enhancement of

the transient components of speech has also been shown to

improve intelligibility of speech in noise conditions [11].

In this work we consider improving the intelligibility of

speech in noise, by combining previous research attempts and

observations into one system, under the constraint of equal

signal power before and after the modification. We consider

single channel near end listening enhancement where both

speech and noise are assumed available for processing. We

revisit the earlier work in this domain ([5]) acknowledging

1other differences include longer and more frequent pauses, reductions

in speaking rate and expansions of the vowel space and modifications (espe-

cially for clear speech)
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that the high-pass filtering of speech indeed improves intelli-

gibility of speech in white noise. However, instead of filtering

the unmodified speech signal as suggested in [5], we apply

the high-pass filter on the output signal of a system which tries

to recover a good signal-to-noise ratio as this was suggested

in [2]. This has the following advantages over previous works.

First, it takes into account the noise characteristics which

is not the case in [5], suggesting therefore an optimum fre-

quency re-allocation of the energy given the noise spectrum

and a pre-specified signal-to-noise-ratio (SNR) gain. Sec-

ond, the high-pass filter removes the low frequencies which,

in voiced speech, contain most of the energy of the signal.

This doesn’t decrease the intelligibility of the high-pass fil-

tered speech, while makes easier to maintain the initial SNR

without reducing significantly the optimum energy of the sig-

nal in the pass band frequencies [2]. This high-pass process

is absent form the work of Sauert et al. [2].

After the high-pass filtering, and based on the observations of

Hazan et al. [10], we suggest the use of a dynamic range com-

pression (DRC) algorithm which reduces the peak-to-rms ra-

tio of the input signal. This has as effect to reduce the energy

of the sonorant speech segments (i.e. mostly voiced) and in-

crease the energy for voiced offsets and onsets, for bursts and

for fricatives. This last step actually re-allocates energy over

time. Experiments with speech shaped (SSN) and competing

speaker (CS) types of noise at various low SNR values, show

that the suggested overall system outperforms state-of-the-art

methods in terms of SII as well as in informal listening tests.

Considering that constraints in the power of modified speech

are imposed, we show that there is an improvement of 4 dB

and 8 dB in terms of SNR gain, for the SSN and the CS types

of noise, respectively.

The rest of the paper is organized as follows. In Section 2

we present the energy reallocation algorithm in the frequency

domain where the SNR-recovery algorithm is combined with

a high-pass filter. Section 3 describes the Dynamic Range

Compression for the reallocation of the signal energy over

time. Experiments with two types of noise, SSN and CS, are

described in Section 4 and finally, Section 5 concludes the

paper.

2. ENERGY REALLOCATION IN FREQUENCY

In this section we will shortly review the SNR-recovery algo-

rithm suggested in [2] since it is the first part of the suggested

system.

The SNR-recovery algorithm enhances the magnitude

spectrum, S(m,Ωk) of frame m (we assume a frame-by-

frame processing) as follows:

Ŝ(m,Ωk) = G(m,Ωk)S(m,Ωk) (1)

where

G(m,Ωk) = min

{

max

{
√

ξ
ΦNN (m,Ωk)

ΦSS(m,Ωk)
, 1

}

, Gmax

}

(2)

denotes the gain per frequency Ωk, ΦNN and ΦSS denote

the short-term power spectra density (PSD) of the noise and

the speech signal respectively, while ξ and Gmax denote the

desired target SNR and the maximum allowed gain, respec-

tively. The short-term PSD for the speech and the noise

is computed as the recursive average of their periodograms,

|S(m,Ωk)|2, |N(m,Ωk)|2. As an example, for speech:

ΦSS(m,Ωk) = aSΦSS(m− 1,Ωk) + (1− aS)|S(m,Ωk)|2

(3)

where aS ∈ [0, 1]. Same recursive formula is used for the

estimation of ΦNN (m,Ωk) but with a different time con-

stant aN . Finally, the maximum value of the modified spec-

trum, Ŝ(m,Ωk) is limited by a third gain Ŝmax(Ωk). In this

work we followed the recommendations for these variables

provided in [2]. Therefore, ξ = 15 dB, Gmax = 30 dB,

Ŝmax(Ωk) = 120 dB, ∀k, the time constants were set to:

aS = 0.996 and aN = 0.96.

Following the work of Niederjohn et al. [5], a high pass

filter is applied in the frequency domain:

S̆(m,Ωk) =

{

0, if Ωk ≤ Ωc

Ŝ(m,Ωk), if Ωk > Ωc
(4)

By listening tests, it was found that if Ωc = 800Hz, the high-

pass filtered speech signal does not loose much of its intelli-

gibility while there is a lot of energy savings because of the

elimination of the low frequency components.

Fig. 1 shows an example of magnitude spectra for the orig-

inal speech and the noise (at -4 dB SNR), as well as the

magnitude spectrum of the original speech after applying the

SNR-recovery algorithm and its high-passed version. It is

worth noticing that keeping only the frequencies beyond 800

Hz, there is a saving of 98% in energy (i.e, the new mag-

nitude spectrum contains only the 2% of the energy of the

SNR-recovered signal). In Fig. 2, the original signal (up-

per panel), and the reconstructed high-passed SNR-recovered

signal (lower panel) are depicted. Since the SNR-recovered

algorithm does not put any constraint in the total energy of

the modified signal, the reconstructed signal has considerably

more energy than the original one. Analysis and synthesis of

signals is performed in frame-by-frame basis, and the output

signal is reconstructed by overlap and add.

3. ENERGY REALLOCATION IN TIME

For the reallocation of the energy over time, the use of a Dy-

namic Range Compression (DRC) system is suggested. The

output from the SNR-recovery and the high-pass filter is the

input to DRC.
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Fig. 1. Example of magnitude spectra for the original speech

(blue solid), noise (magenta solid), enhanced by the SNR-

recovery algorithm [2] (blue dashed, labeled as SV06), and

its high-passed version (green solid). Initial SNR: - 4 dB.
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Fig. 2. Original speech (upper panel) and high-passed SNR-

recovery signal (lower panel).

The goal of DRC is to produce a time-varying gain to reduce

the envelope of the signal variations. This gain is derived

from a desired input/output envelope characteristic (IOEC).

The IOEC used in this work is shown in Fig. 3 with its three

characteristic zones; unity gain, expansion, and compression.

The envelope of the speech signal, s(n) is computed as the

magnitude of the analytic signal:

r(n) = s(n) + js̆(n)

where s̆(n) denotes the Hilbert transform of s(n). The enve-

lope, e(n) of the signal is then given by:

e(n) = |r(n)|

In order to avoid fast fluctuations of the envelope of the signal,

the envelope is actually computed as the RMS value of non-

overlapped segments of the envelope e(n), where the length

of the segment was 2.5 times the mean pitch period of the
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Fig. 3. Input-Output Envelope Characteristic (IOEC) curve.

gender of the speaker (i.e. assuming average fundamental fre-

quency as 120 Hz for male and 200 Hz for female speakers,

respectively). Fig. 4 shows an example of the envelope esti-

mation for the signal shown in the lower panel in Fig. 2
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Fig. 4. Example of an envelope estimation. Computed enve-

lope is shown with a thick solid line.

DRC has a dynamic and a static stage. During the dy-

namic stage, the envelope of the signal is dynamically com-

pressed with 2 ms release time constant and has an almost

instantaneous attack time constant. More specifically,

ê(n) =

{

ar ê(n− 1) + (1− ar)e(n), if e(n) < ê(n− 1)
aaê(n− 1) + (1− aa)e(n), if e(n) ≥ ê(n− 1)

(5)

In the present work, the time constants were selected as ar =
0.15 and aa = 0.0001.

During the static stage the smoothed envelope, â(n) is

converted to dB and applied to the IOEC curve, shown in

Fig. 3, to obtain the time-varying gain. The 0 dB reference

level e0, is a key element in forming the IOEC, is obtained

by making an estimate of the largest envelope of the output

waveform. For this work, it was set to 30% of the maximum

of the envelope of the input signal. Having the reference level,

the input envelope is computed in dB

ein(n) = 20 log10 (ê(n)/e0)
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The output level eout(n) is obtained from the IOEC curve and

then the gain is computed as:

g(n) = 10(eout(n)−ein(n))/20

The DRC output signal is given by:

sg(n) = g(n)s(n)

At the final stage, the global energy of sg(n) is scaled

so that is the same as that of the original unmodified speech

signal. An example of the output from DRC is depicted in

Fig. 5.
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Fig. 5. Example of the output from DRC. Unmodified speech

signal (upper panel). Output from DRC (lower panel).

4. RESULTS

For testing the suggested system, we used 240 Harvard sen-

tences uttered by a native British English male speaker, and

two types of noise: Speech Shaped Noise (SSN) at SNR: -9

dB, -4 dB and 1 dB, and Competing Speaker noise (CS) at

SNR: -21 dB, -14 dB, -7 dB. The sentences were recorded at

16 kHz in CSTR, UK. SII was selected to objectively measure

the performance of the suggested system and compare it with

other published systems. For this purpose the extended SII al-

gorithm was implemented [12] using multi-resolution analy-

sis windows; from 35 ms for the lowest critical band (150 Hz)

to 9.4 ms for the highest band (8000 Hz). Fig. 6 shows the SII

scores for the original (unmodified) speech, for the suggested

system, and for its subsystems; high pass after frequency real-

location (SRH) and Dynamic Range Compression sub-system

(DRC). The cascade combination of these two sub-systems

provide the final suggested system (SRHDRC). Both subsys-

tems contribute to the improvement of SII score. DRC seems

to perform a bit better than SRH in most of the cases. The

combination of these two sub-systems improves the SII score

considerably, showing that the two sub-systems are comple-

mentary; SRH works in the frequency domain and DRC in

the time domain (as was already mentioned above).
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Fig. 6. Speech Intelligibility Index before and after process-

ing with the suggested system for SSN (upper panel) and CS

(lower panel).

For comparison purposes, the speech-in-noise enhance-

ment systems suggested in [2] and [3] were also implemented

and tested on the same Harvard utterances and under the same

noise conditions. For all these systems, energy constraints

were imposed so that unmodified and modified signal have

the same global RMS value. Fig. 7 compares systems SV06

([2]) and SV10 ([3]) with the suggested system, SRHDRC.

Again, the baseline (the SII score for the unmodified speech)

is also provided. Overall, we observe that the suggested sys-

tem (SRHDRC) outperforms SV06 and SV10 for all SNR

levels and for both types of noise. All modified signals re-

port better SII score than the non-modified signals. Between

SV06 and SV10, the winner is SV06.

Informal listening tests show that the enhanced speech us-

ing the suggested approach indeed produces more intelligi-

ble speech than the enhanced signal produced by SV10 or

SV06. This is somehow expected since, based on the SII re-

sults shown in Fig. 7, the suggested enhanced system, and for

low SNR values (-4 dB for SSN, and -14 dB for CS) has an

improvement over SV06 and SV10 of 4 dB and 8 dB in terms

of SNR gain, for the SSN and the CS types of noise, respec-

tively.

5. CONCLUSIONS

In this work we suggested to enhance the original speech sig-

nal combining a signal to noise ratio recovery approach fol-

lowing by a high-pass filtering with dynamic range compres-

sion in order to improve the intelligibility of the speech in
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Fig. 7. Speech Intelligibility Index before and after process-

ing with the suggested system and the methods described in

[2] (SV06) and [3] (SV10).

noise under the constraint of equal signal power before and

after the modification. Tests with speech shaped noise and

competing speaker noise conditions at various low SNR val-

ues, show that the suggested approach outperforms state-of-

the-art methods in terms of SII score. Moreover the modified

signal has no artifacts and actually has a more a crisp quality

than the original signal.
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